精英家教网 > 高中数学 > 题目详情
1.若实数x,y满足$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$则z=x-2y的最小值是(  )
A.-2B.-1C.0D.2

分析 画出满足条件的平面区域,求出角点的坐标,结合函数的图象求出z的最小值即可.

解答 解:画出满足条件的平面区域,如图示:

由$\left\{\begin{array}{l}{x+y-2=0}\\{x-y=0}\end{array}\right.$,解得A(1,1),
由z=x-2y得:y=$\frac{1}{2}$x-$\frac{z}{2}$,
显然直线过A(1,1)时,z最小,
z的最小值是-1,
故选:B.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某市新区一街道AB长1500米,街道A处有大量河沙,为方便工作,需要提前在街面上每隔50米放置一车沙,现用一辆车将A年的沙由到远依次倒放在指定地点,问:将所有各点的沙倒完时,这辆车共往返行驶了多少路程?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列四个命题:
①平面α∩β=l,a?α,b?β,若a,b为异面直线,则a,b中至少有一条与l相交.
②若a,b∈R,且a+b=3,则2a+2b的最小值为4$\sqrt{2}$.
③若x∈R,则“复数z=(1-x2)+(1+x)i为纯虚数”是“lg|x|=0”必要不充分条件.
④正项数列{an},其前n项和为Sn,若Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),则 an=$\sqrt{n}$-$\sqrt{n-1}$.(n∈N+).
其中真命题有①②④.(填真命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,则|$\overrightarrow{b}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ax+bsinx(0<x<$\frac{π}{2}$),若a≠b且a,b∈{-2,-1,0,1,2},则f(x)的图象上任一点处的切线斜率都非负的概率为$\frac{9}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x=3${\;}^{ln\frac{3}{2}}$,y=logπ3,则x,y的大小关系是x>y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设实数x,y满足约束条件$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x-y-2≥0\end{array}\right.$,则z=x+y的最小值是(  )
A.$\frac{8}{5}$B.1C.2D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设计一个程序,输入一个学生的成绩S,根据该成绩的不同作以下输出:若S<60,则输出“不及格”;若60≤S≤90,则输出“及格”;若S>90,则输出“优秀”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函敬f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≥0}\\{3-2x,x<0}\end{array}\right.$,求值:
(2)f(-$\frac{1}{2}$);
(3)f(2-0.5);
(4)f(t-1).

查看答案和解析>>

同步练习册答案