精英家教网 > 高中数学 > 题目详情
8.已知数列{an}满足Sn=n-an
(1)求证:数列{an-1}是等比数列;
(2)求an

分析 (1)由已知可得Sn+1=n+1-an+1,和已知式子两式相减可得an+1=$\frac{1}{2}$+$\frac{1}{2}$an,代入$\frac{{a}_{n+1}-1}{{a}_{n}-1}$化简可得;
(2)由Sn=n-an可得a1,进而可得a1-1,由等比数列的通项公式可得an-1,移项可得.

解答 (1)证明:∵数列{an}满足Sn=n-an
∴Sn+1=n+1-an+1,两式相减可得
Sn+1-Sn=(n+1)-n-an+1+an
∴an+1=1-an+1+an,∴an+1=$\frac{1}{2}$+$\frac{1}{2}$an
∴$\frac{{a}_{n+1}-1}{{a}_{n}-1}$=$\frac{\frac{1}{2}+\frac{1}{2}{a}_{n}-1}{{a}_{n}-1}$=$\frac{\frac{1}{2}({a}_{n}-1)}{{a}_{n}-1}$=$\frac{1}{2}$,
∴数列{an-1}是$\frac{1}{2}$为公比的等比数列;
(2)由(1)可得数列{an-1}是$\frac{1}{2}$为公比的等比数列,
由Sn=n-an可得a1=S1=1-a1,解得a1=$\frac{1}{2}$,故a1-1=-$\frac{1}{2}$,
∴an-1=-$\frac{1}{2}$×($\frac{1}{2}$)n-1=($\frac{1}{2}$)n,∴an=1+($\frac{1}{2}$)n

点评 本题考查等比数列的证明和数列的递推公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.据下列各无穷数列的前5项,写出数列的一个通项公式:
(1)-1,$\frac{1}{8}$,-$\frac{1}{27}$,$\frac{1}{64}$,-$\frac{1}{125}$,…;
(2)$\frac{3}{5}$,$\frac{4}{8}$,$\frac{5}{11}$,$\frac{6}{14}$,$\frac{7}{17}$,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.用五点法画出y=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.集合A={x|ax2-2x+1=0}只有一个元素,求实数a的值及A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.己知实数x,y满足约束条件$\left\{\begin{array}{l}{5x+3y≤15}\\{y≤x+1}\\{x-5y≤3}\end{array}\right.$,若目标函数z=3x+ay在点A($\frac{3}{2}$,$\frac{5}{2}$)取得最大值,则a的取值范围是($\frac{9}{5},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x>0,y>0,xy-x-2y+$\frac{3}{2}$=0,则x+2y的取值范围是(  )
A.(0,2]∪[6,+∞)B.(0,$\frac{3}{2}$]∪[6,+∞)C.($\frac{3}{2}$,2]∪[6,+∞)D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z1=3+2i,z2=1-i,则|z1+$\frac{2}{{z}_{2}}$|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=2ax2-x3(a>1)在区间(0,1]上是增函数,则实数a的取值范围是[$\frac{3}{4},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是(  )
A.?x0∈R,f(x0)=0
B.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减
C.函数f(x)的图象是中心对称图形
D.若x0是f(x)的极值点,则f′(x0)=0

查看答案和解析>>

同步练习册答案