精英家教网 > 高中数学 > 题目详情
16.集合A={x|ax2-2x+1=0}只有一个元素,求实数a的值及A.

分析 讨论a,当a=0时,方程是一次方程,当a≠0时,二次方程只有一个解时,判别式等于零,可求出所求.

解答 解:若集合A={x|ax2-2x+1=0,a∈R}只有一个元素,
则方程ax2-2x+1=0有且只有一个解,
当a=0时,方程可化为2x-1=0,x=$\frac{1}{2}$满足条件,即A={$\frac{1}{2}$}
当a≠0时,二次方程ax2-2x+1=0有且只有一个解,
则△=4-4a=0,解得a=1,此时x=1,即A={1},
故满足条件的a的值为0或1,A={$\frac{1}{2}$}或{1}.

点评 本题考查的知识点是集合元素的确定性及方程根的个数的判断及确定,同时考查了转化的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a=4,b=2,求角B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$=$\overrightarrow{c}$•$\overrightarrow{a}$.试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在[3m-1,m]的函数f(x)=-mx2+(n+1)x,且f(x-2)是偶函数,则(n-m)2=(  )
A.0B.$\frac{25}{16}$C.$\frac{121}{16}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设偶函数f(x)在[0,+∞)上为增函数,则不等式f(x)>f(2x十1)的解集为(  )
A.B.{x|x<-1或x>$\frac{1}{3}$}C.{x|x>1或x<$\frac{1}{3}$}D.{x|-1<x<-$\frac{1}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.比较大小
(1)sin(-$\frac{π}{18}$)…sin(-$\frac{π}{10}$
(2)cos(-$\frac{23π}{5}$)…cos(-$\frac{17π}{4}$)
(3)sin10°,sin20°;
(4)cos10°,cos20°;
(5)sin10°,cos20°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足Sn=n-an
(1)求证:数列{an-1}是等比数列;
(2)求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过圆x2+y2=4上的点M(1,-$\sqrt{3}$)作圆的切线l,且直线l恰好过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点,则该椭圆的离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xoy中,已知曲线${C_1}:{x^2}+{y^2}=1$,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的$\sqrt{3}$、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程.

查看答案和解析>>

同步练习册答案