精英家教网 > 高中数学 > 题目详情
13.i是虚数单位,a∈R,若复数(1-2i)(a+i)是纯虚数,则|1+ai|2=$\frac{5}{4}$.

分析 由复数的运算化简已知复数,由纯虚数的定义可得a值,再由模长公式可得.

解答 解:化简可得(1-2i)(a+i)=a+i-2ai-2i2=a+3+(1-2a)i,
由纯虚数的定义可得1-2a=0,解得a=$\frac{1}{2}$,
∴|1+ai|2=|1+$\frac{1}{2}$i|2=12+($\frac{1}{2}$)2=$\frac{5}{4}$
故答案为:$\frac{5}{4}$

点评 本题考查复数的代数形式的混合运算,求出a值是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若p=$\sqrt{a+4}$+$\sqrt{a+5}$,q=$\sqrt{a+3}$+$\sqrt{a+6}$(a≥0),则p、q的大小关系是(  )
A.p<qB.p=qC.p>qD.由a的取值确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数z满足(1-i)z=2i,则z在复平面内对应的点在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某校6名同学进入演讲比赛的终极PK,要求安排选手A不是第一个上场也不是最后一个,选手B和C必须相邻则不同排法的种数是144.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$θ∈[{\frac{π}{6},\frac{2π}{3}}]$,已知$\overrightarrow{O{P}_{1}}$=(sinθ,cosθ),$\overrightarrow{O{P}_{2}}$=(3-sinθ,-cosθ),则|$\overrightarrow{{P}_{1}{P}_{2}}$|的取值范围是(  )
A.[1,5]B.[$\sqrt{13-6\sqrt{3}}$,$\sqrt{7}$]C.[1,$\sqrt{7}$]D.[1,$\sqrt{13-6\sqrt{3}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分别是以7000元、5600元、4200元,则参加此次大赛获得奖金的期望是5000元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,输出的n的值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),有Cn+1m种取法.在这Cn+1m种取法中,可分两类:一类是取出的m个球全部为白球,有C10Cnm种取法;另一类是取出1个黑球、m-1个白球,有C11Cnm-1种取法,所以有式子:C10Cnm+C11Cnm-1=Cn+1m成立.根据上述思想方法化简下列式子:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk-1•Cnm-k+1+Cnm-k=${C}_{n+k}^{m}$(1≤k<m≤n,k,m,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={(x,y)|x,y∈R},若x,y∈A,已知x=(x1,y1),y=(x2,y2),定义集合A中元素间的运算x*y,称为“*”运算,此运算满足以下运算规律:
①任意x,y∈A有x*y=y*x
②任意x,y,z∈A有(x+y)*z=x*z+y*z(其中x+y=(x1+x2,y1+y2))
③任意x,y∈A,a∈R有(ax)*y=a(x*y)
④任意x∈A有x*x≥0,且x*x=0成立的充分必要条件是x=(0,0)为向量,如果x=(x1,y1),y=(x2,y2),那么下列运算属于“*”正确运算的是(  )
A.x*y=x1y1+2x2y2B.x*y=x1y1-x2y2C.x*y=x1y1+x2y2+1D.x*y=2x1x2+y1y2

查看答案和解析>>

同步练习册答案