精英家教网 > 高中数学 > 题目详情
4.已知z(1-i)=2i(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.1D.2

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:∵z(1-i)=2i,∴z(1-i)(1+i)=2i(1+i),∴2z=2(i-1),∴z=i-1.
则|z|=$\sqrt{(-1)^{2}+{1}^{2}}$=$\sqrt{2}$,
故选:A.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.双曲线${x^2}-\frac{y^2}{3}=1$的渐近线方程是(  )
A.y=±xB.$y=±\frac{1}{3}x$C.$y=±\sqrt{3}x$D.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列三个命题:
①命题“若x2-x=0,则x=1”的逆否命题为“若x≠1,则x2-x≠0”;
②若p:x(x-2)≤0,q:log2x≤1,则p是q的充要条件;
③若命题p:存在x∈R,使得2x<x2,则?p:任意x∈R,均有2x≥x2
其中正确命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,过抛物线C:y2=2px(p>0)的焦点F作直线交C于A、B两点,过A、B分别向C的准线l作垂线,垂足为A1、B1,已知△AA1F与△BB1F的面积分别为9和1,则△A1B1F的面积为(  )
A.4B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定点A(0,1),B(0,-1),C(1,0),动点P满足$\overrightarrow{AP}$•$\overrightarrow{BP}$=2|$\overrightarrow{CP}$|2,则|2$\overrightarrow{AP}$+$\overrightarrow{BP}$|的最大值为(  )
A.$\sqrt{37}$-3B.$\sqrt{37}$+3C.$\sqrt{10}$D.$\sqrt{82}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若a=b=$\sqrt{3}$,∠C=$\frac{5π}{6}$,则c=$\frac{3\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.正方体ABCD-A1B1C1D1中棱长为1,则面A1BD与底面ABCD所成的角余弦值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{6}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.化简:$\frac{sin58°-sin28°cos30°}{cos28°}$=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有两个等差数列2,6,10,…,190及2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列{an}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的所有项的和.

查看答案和解析>>

同步练习册答案