【题目】某商店经营的某种消费品的进价为每件14元,月销售量(百件)与每件的销售价格(元)的关系如图所示,每月各种开支2 000元.
(1)写出月销售量(百件)关于每件的销售价格(元)的函数关系式.
(2)写出月利润(元)与每件的销售价格(元)的函数关系式.
(3)当该消费品每件的销售价格为多少元时,月利润最大?并求出最大月利润.
【答案】(1) ;(2) ;(3) 当该消费品每件的销售价格为学时,月利润最大,为4050元
【解析】
(1)根据函数的图象为分段函数,分别求得当和时,求得函数的解析式,即可得到答案;
(2)由(1)中的函数,结合题意,即可求得月利润(元)与每件的销售价格(元)的函数关系式.
(3)由(2)中的解析式,结合二次函数的性质,分别求得当和的最大值,即可求解.
(1)由题意,当时,设函数,
由,解得,所以,
同理可得当时,,
所以.
(2)当时,,
即;
当时,,
即,
所以.
(3)由(2)中的解析式和二次函数的知识,可得
当时,则时,取到最大值,为4050;
当时,则时,取到最大值,为.
又由,所以当该消费品每件的销售价格为学时,月利润最大,为4050元.
科目:高中数学 来源: 题型:
【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;
(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)当时,
①若曲线与直线相切,求c的值;
②若曲线与直线有公共点,求c的取值范围.
(2)当时,不等式对于任意正实数x恒成立,当c取得最大值时,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.
(1)已知,,利用上述性质,求的单调区间和值域;
(2)对于(1)中的函数和函数,若对任意的,总存在使得成立,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年5月,来自“一带一路”沿线的国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.为发展业务,某调研组对两个公司的扫码支付准备从国内 个人口超过万的超大城市和个人口低于万的小城市随机抽取若干个进行统计,若一次抽取个城市,全是小城市的概率为.
(I)求的值;
(Ⅱ)若一次抽取个城市,则:
①假设取出小城市的个数为,求的分布列和期望;
②取出个城市是同一类城市求全为超大城市的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以,,,,,(单位:度)分组的频率分布直方图如下图:
若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:
月平均用电量(度) | ||||||
使用峰谷电价的户数 | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);
(2)()将“一般用户”和“大用户”的户数填入下面的列联表:
一般用户 | 大用户 | |
使用峰谷电价的用户 | ||
不使用峰谷电价的用户 |
()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com