精英家教网 > 高中数学 > 题目详情
已知直线L:x+y-9=0和圆M:2x2+2y2-8x-8y-1=0,点A在直线L上,B,C为圆M上的两点,在△ABC中,∠BAC=45°,AB过圆心M,则点A的横坐标取值范围为(  )
A、[0,3]
B、[3,6]
C、(0,3]
D、(3,6)
考点:直线与圆的位置关系
专题:直线与圆
分析:圆的方程化为标准方程,设A(a,9-a),①当a≠2时,把∠BAC看作AB到AC的角,又点C在圆M,由圆心到AC的距离小于等于圆的半径,求出a的范围;②当a=2时,则A(2,7)与直线x=2成45°角的直线有x-y+5=0,或x+y-9=0,判断这样点C不在圆M上不成立.
解答: 解:圆M:2x2+2y2-8x-8y-1=0方程可化为(x-2)2+(y-2)2=(
34
2
2
设A点的横坐标为a,则纵坐标为9-a;
①当a≠2时,kAB=
7-a
a-2
,设AC的斜率为k,把∠BAC看作AB到AC的角,则可得k=
5
2a-9

直线AC的方程为y-(9-a)=
5
2a-9
(x-a)
即5x-(2a-9)y-2a2+22a-81=0,
又点C在圆M上,所以只需圆心到AC的距离小于等于圆的半径,即
|10-2(2a-9)-2a2+22a-81|
25+(2a-9)2
34
2

化简得a2-9a+18≤0,解得3≤a≤6;
②当a=2时,则A(2,7)与直线x=2成45°角的直线为x-y+5=0,或x+y-9=0
M到x-y+5=0的距离d=
|2-2+5|
2
=
5
2
2
34
2
,这样点C不在圆M上,
同理x+y-9=0,显然也不满足条件,
综上:A点的横坐标范围为[3,6].
故选B.
点评:本题主要考查直线与圆的位置关系及方程的应用,考查直线中的到角公式,点到直线的距离,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,圆C的方程为ρ=2acosθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=3t+2
y=4t+2
(t为参数),若直线l与圆C相切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过原点O的椭圆有一个焦点F(0,4),且长轴长2a=10,求此椭圆的中心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x,x≥0
-x2+2x,x<0
,则使f(a2)>f(4a)成立的实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x∈R|y=lg(2-x)},B={y∈R|y=2x-1,x∈A},则∁R(A∩B)=(  )
A、R
B、(-∞,0]∪[2,+∞)
C、[2,+∞)
D、(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)将一颗骰子(正方体形状)先后抛掷2次,得到的点数分别记为x,y,求x+y=2 及x+y<4的概率;
(2)从区间(-1,1)中随机取两个数x,y,求x2+y2<1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)d的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(
2
+1
).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)是否存在常熟λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边中点,已知最底层正方体的棱长为2,且该塔形的表面积(含C最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线2x-y-1=0与圆(x-1)2+y2=2的位置关系为
 

查看答案和解析>>

同步练习册答案