分析 平移CB1到A处,由已知得∠B1CA=30°,∠B1AC=150°,0≤∠C1AC≤20°,由此能求出直线B1C与直线AC1所成角的取值范围.
解答 ![]()
解:∵在△ABC中,∠BAC=10°,∠ACB=30°,
将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1,
如图,平移CB1到A处,B1C绕AC旋转,
∴∠B1CA=30°,∠B1AC=150°,
AC1绕AB旋转,∴0°≤∠C1AC≤2∠CAB,
∴0≤∠C1AC≤20°,
设直线B1C与直线AC1所成角为α,
则∠B1AC-∠C1AC≤α≤∠B1AC+∠C1AC,
∵130°≤∠B1AC-∠C1AC≤150°,
150°≤∠B1AC+∠C1AC≤170°,
∴10°≤α≤50°或130°≤α≤170°(舍).
故答案为:[10°,50°].
点评 本题考查两直线所成角的取值的求法,解题时要认真审题,注意旋转性质的合理运用,是难题.
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{5}{4},+∞)$ | B. | $(1,\frac{5}{4}]$ | C. | $[\frac{7}{4},+∞)$ | D. | $(1,\frac{7}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinα)>f(cosβ) | B. | f(sinα)<f(cosβ) | ||
| C. | f(sinα)=f(cosβ) | D. | 以上情况均有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 45° | B. | 60° | C. | 120° | D. | 135° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{6}$ | B. | 2$\sqrt{7}$ | C. | $\sqrt{14}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com