精英家教网 > 高中数学 > 题目详情
已知直线l的方程为,且直线lx轴交于点M,圆x轴交于两点(如图).
(I)过M点的直线交圆于两点,且圆孤恰为圆周的,求直线的方程;
(II)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;

(III)过M点的圆的切线交(II)中的一个椭圆于两点,其中两点在x轴上方,求线段CD的长.
(I)(II)(III)
(I)为圆周的点到直线的距离为
的方程为
的方程为
(II)设椭圆方程为,半焦距为c,则
椭圆与圆O恰有两个不同的公共点,则
时,所求椭圆方程为
时,
所求椭圆方程为
(III)设切点为N,则由题意得,椭圆方程为
中,,则
的方程为,代入椭圆中,整理得
,则
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆:的离心率,过点的直线与椭圆交于两点,且,求面积的最大值及取得最大值时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)椭圆的左、右焦点分别为F1F2,过F1的直线l与椭圆交于AB两点.(Ⅰ)如果点A在圆c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率;(Ⅱ)若函数的图象,无论m为何值时恒过定点(ba),求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆Ox2+y2=2交x轴于AB两点,点P(-1,1)为圆O上一点.曲线C是以AB为长轴,离心率为的椭圆,点F为其右焦点.

过原点O作直线PF的垂线交椭圆C的右准线l于点Q
(1)求椭圆C的标准方程;(2)证明:直线PQ与圆O相切.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(1)求椭圆C的方程;
(2)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦, MNAB,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”.
(Ⅱ)观察下图:
          
根据上图,试推测曲线的“上夹线”的方程,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知F1(-c,0), F2(c,0) (c>0)是椭圆的两个焦点,O为坐标原点,圆M的方程是
(1)若P是圆M上的任意一点,求证:是定值;
(2)若椭圆经过圆上一点Q,且cos∠F1QF2=,求椭圆的离心率;
(3)在(2)的条件下,若|OQ|=,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆Q:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点.
(1)求点P的轨迹H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤
π
2
),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点且有,则点的轨迹是(    )
A.椭圆B.双曲线C.线段D.两射线

查看答案和解析>>

同步练习册答案