精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知椭圆:的离心率,过点的直线与椭圆交于两点,且,求面积的最大值及取得最大值时椭圆的方程.
:设椭圆的方程为直线的方程为
,则椭圆方程可化为
,联立(*)
而由已知,代入得
所以
当且仅当时取等号由,将代入(*)式得所以面积的最大值为,取得最大值时椭圆的方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2001高考江西、山西、天津)设坐标原点为O,抛物线y2=2x与过焦点的直线交于AB两点,则等于(   )
A.B.-C.3D.-3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC,
AB="2," AD=, BC=,椭圆E以A,B为焦点且经过点D.  (1)建立适当的直角坐标系,求椭圆E的方程;  (2)若点Q满足:,问是否存在不平行AB,的直线与椭圆E交于M、N两点.且|MQ|=|NQ|.若存在,求直线的斜率的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(原创题)
已知是曲线上一点,是该曲线的两个焦点,若内角平分线的交点到三边上的距离为1,,则的值为   
A.B.C.-D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆+=1与双曲线=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|·|PF2|=      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l的方程为,且直线lx轴交于点M,圆x轴交于两点(如图).
(I)过M点的直线交圆于两点,且圆孤恰为圆周的,求直线的方程;
(II)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;

(III)过M点的圆的切线交(II)中的一个椭圆于两点,其中两点在x轴上方,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
求适合下列条件的圆锥曲线方程:
(1).长轴长是短轴长的3倍,经过点(3,0)的椭圆标准方程。
(2).已知双曲线两个焦点的坐标为,双曲线上一点P到两焦点的距离之差的绝对值等于6,求双曲线标准方程.
(3).已知抛物线的顶点在原点,准线与其平行线x=2的距离为3,求抛物线标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线过点(-1,2)且与直线垂直,则的方程是 (   )
a.                     b.
c.                     d.

查看答案和解析>>

同步练习册答案