精英家教网 > 高中数学 > 题目详情
已知椭圆+=1与双曲线=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|·|PF2|=      
m-p
提示:分别用椭圆和双曲线的定义,并将两等式平方相减.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆:的离心率,过点的直线与椭圆交于两点,且,求面积的最大值及取得最大值时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条准线与抛物线y2=-6x的准线重合,则该双曲线的离心率是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程所表示的曲线是 ( )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在 y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)椭圆的左、右焦点分别为F1F2,过F1的直线l与椭圆交于AB两点.(Ⅰ)如果点A在圆c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率;(Ⅱ)若函数的图象,无论m为何值时恒过定点(ba),求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知F1(-c,0), F2(c,0) (c>0)是椭圆的两个焦点,O为坐标原点,圆M的方程是
(1)若P是圆M上的任意一点,求证:是定值;
(2)若椭圆经过圆上一点Q,且cos∠F1QF2=,求椭圆的离心率;
(3)在(2)的条件下,若|OQ|=,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点且有,则点的轨迹是(    )
A.椭圆B.双曲线C.线段D.两射线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

O为坐标原点,点,点轴正半轴上移动,表示的长,则△ABC中两边长的比值的最大值为
A.B.C.D.

查看答案和解析>>

同步练习册答案