精英家教网 > 高中数学 > 题目详情
18.已知$\int{\;}_0^{\frac{π}{2}}$(sinx-acosx)dx=3,则实数a的值为(  )
A.1B.-1C.2D.-2

分析 利用定积分的运算求得$\int{\;}_0^{\frac{π}{2}}$(sinx-acosx)dx=-a+1,即可求得a的值.

解答 解:由$\int{\;}_0^{\frac{π}{2}}$(sinx-acosx)dx=(-cosx-asinx)${丨}_{0}^{\frac{π}{2}}$=1-a,
∴1-a=3,
∴a=-2,
故答案选:D.

点评 本题主要考查了定积分的求解,涉及正弦函数和余弦函数的定积分和积分运算法则的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知点A(x1,lgx1),B(x2,lgx2)是函数f(x)=lgx的图象上任意不同两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的下方,因此有结论$\frac{lg{x}_{1}+lg{x}_{2}}{2}$<lg($\frac{{x}_{1}+{x}_{2}}{2}$)成立.运用类比思想方法可知,若点A(x1,${2}^{{x}_{1}}$),B(x2,${2}^{{x}_{2}}$) 是函数g(x)=2x的图象上的不同两点,则类似地有$\frac{{2}^{{x}_{1}}+{2}^{{x}_{2}}}{2}>{2}^{\frac{{x}_{1}+{x}_{2}}{2}}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l:3x-4y+m=0过点(-1,2),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线G的方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),正方形OABC内接于曲线G,且O,A,B,C依逆时针方向排列,A在极轴上.
(Ⅰ)写出直线l的参数方程和曲线G的直角坐标方程;
(Ⅱ)若点P为直线l上任意一点,求PO2+PA2+PB2+PC2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A,B是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右顶点,F为其右焦点,在直线x=4上任取一点P(点P不在x轴上),连结PA,PF,PB.若半焦距c=1,且2kPF=kPA+kPB
(1)求椭圆C的方程;
(2)若直线PF交椭圆于M,N,记△AMB、△ANB的面积分别为S1、S2,求$\frac{S_1}{S_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以点A(-5,4)为圆心,且与y轴相切的圆的方程是(  )
A.(x+5)2+(y-4)2=25B.(x-5)2+(y+4)2=16C.(x+5)2+(y-4)2=16D.(x-5)2+(y+4)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点F1,F2,且椭圆过点(0,$\sqrt{3}}$),(${\sqrt{3}$,-$\frac{{\sqrt{6}}}{2}}$),且A是椭圆上位于第一象限的点,且△AF1F2的面积S${\;}_{△A{F_1}{F_2}}}$=$\sqrt{3}$.
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P,Q,直线AP,AQ与x轴相交于M,N两点,点C(${\frac{5}{2}$,0),则$\overrightarrow{CM}$•$\overrightarrow{CN}$是否为定值,如果是定值,求出这个定值,如果不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知五个数2,a,m,b,8构成一个等比数列,则圆锥曲线$\frac{x^2}{m}$+$\frac{y^2}{2}$=1的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{2}}}{2}$或$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=log${\;}_{\frac{1}{2}}$(1-2cos2x);
(1)判断函数的奇偶性;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,1)}\\{{x}^{2}-1,x∈[1,2]}\end{array}\right.$,则${∫}_{-1}^{2}$f(x)dx的值为$\frac{π}{2}$+$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案