分析 (1)求函数的定义域,结合函数奇偶性的定义进行判断即可.
(2)根据复合函数单调性之间的关系进行求解即可.
解答 解:(1)由1-2cos2x>0得cos2x<$\frac{1}{2}$,则$\frac{π}{3}$+2kπ<2x<$\frac{5π}{3}$+2kπ,即kπ+$\frac{π}{6}$<x<kπ+$\frac{5π}{6}$,
则定义域关于原点对称,则f(-x)=y=log${\;}_{\frac{1}{2}}$(1-2cos2x)=f(x),
则函数f(x)是偶函数;
(2)设t=1-2cos2x,则函数y=log${\;}_{\frac{1}{2}}$t为减函数,
当$\frac{π}{3}$+2kπ<2x≤π+2kπ,即kπ+$\frac{π}{6}$<x≤$\frac{π}{2}$+kπ时,y=cos2x为减函数,y=1-2cos2x为增函数,y=log${\;}_{\frac{1}{2}}$(1-2cos2x)为减函数,即单调递减区间为(kπ+$\frac{π}{6}$,$\frac{π}{2}$+kπ],k∈Z,
当π+2kπ≤2x<$\frac{5π}{3}$++2kπ,即$\frac{π}{2}$+kπ≤x<kπ+$\frac{5π}{6}$时,y=cos2x为增函数,y=1-2cos2x为减函数,y=log${\;}_{\frac{1}{2}}$(1-2cos2x)为增函数,即单调递增区间为[$\frac{π}{2}$+kπ,kπ+$\frac{5π}{6}$],k∈Z.
点评 本题主要考查函数奇偶性的判断以及函数单调区间的求解,利用复合函数单调性之间的关系是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8π}{3}$-2$\sqrt{3}$ | B. | $\frac{4π}{3}$-$\sqrt{3}$ | C. | $\frac{2π}{3}$+$\sqrt{3}$ | D. | $\frac{4π}{3}$+$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{7\sqrt{2}}{10}$ | D. | -$\frac{7\sqrt{2}}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com