分析 (1)每个学生有四个不同的选择,由此根据分步乘法计数原理,能求出这3名学生选修课所有选法的总数.
(2)由已知利用排列组合知识能求出恰有2门选修课这3名学生都没选择的概率.
(3)A选修课被这3名学生选择的人数为ξ,则ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
解答 解:(1)每个学生有四个不同的选择,
根据分步乘法计数原理,
这3名学生选修课所有选法的总数N=4×4×4=64.
(2)恰有2门选修课这3名学生都没选择的概率为:
$p=\frac{{C}_{4}^{2}{C}_{3}^{2}{A}_{2}^{2}}{{4}^{3}}$=$\frac{2×3×3×2}{4×4×4}$=$\frac{9}{16}$.
(3)A选修课被这3名学生选择的人数为ξ,则ξ的可能取值为0,1,2,3,
P(ξ=0)=$\frac{{3}^{3}}{{4}^{3}}$=$\frac{27}{64}$,
P(ξ=1)=$\frac{{C}_{3}^{1}•{3}^{2}}{{4}^{3}}$=$\frac{27}{64}$,
P(ξ=2)=$\frac{{C}_{3}^{2}•3}{{4}^{3}}$=$\frac{9}{64}$,
P(ξ=3)=$\frac{{C}_{3}^{3}}{{4}^{3}}$=$\frac{1}{64}$,
∴ξ的分布列为:
| ξ | 0 | 1 | 2 | 3 |
| P | $\frac{27}{64}$ | $\frac{27}{64}$ | $\frac{9}{64}$ | $\frac{1}{64}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,是中档题,解题时要认真审题,注意计算原理、排列组合知识的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$ | D. | $\frac{{\sqrt{2}}}{2}$或$\frac{{\sqrt{6}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,5] | B. | [-2,5] | C. | [1,7] | D. | [-2,7] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com