精英家教网 > 高中数学 > 题目详情
15.某中学校本课程开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.
(1)求这3名学生选修课所有选法的总数;
(2)求恰有2门选修课没有被这3名学生选择的概率;
(3)求A选修课被这3名学生选择的人数ξ的分布列及数学期望.

分析 (1)每个学生有四个不同的选择,由此根据分步乘法计数原理,能求出这3名学生选修课所有选法的总数.
(2)由已知利用排列组合知识能求出恰有2门选修课这3名学生都没选择的概率.
(3)A选修课被这3名学生选择的人数为ξ,则ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)每个学生有四个不同的选择,
根据分步乘法计数原理,
这3名学生选修课所有选法的总数N=4×4×4=64.
(2)恰有2门选修课这3名学生都没选择的概率为:
$p=\frac{{C}_{4}^{2}{C}_{3}^{2}{A}_{2}^{2}}{{4}^{3}}$=$\frac{2×3×3×2}{4×4×4}$=$\frac{9}{16}$.
(3)A选修课被这3名学生选择的人数为ξ,则ξ的可能取值为0,1,2,3,
P(ξ=0)=$\frac{{3}^{3}}{{4}^{3}}$=$\frac{27}{64}$,
P(ξ=1)=$\frac{{C}_{3}^{1}•{3}^{2}}{{4}^{3}}$=$\frac{27}{64}$,
P(ξ=2)=$\frac{{C}_{3}^{2}•3}{{4}^{3}}$=$\frac{9}{64}$,
P(ξ=3)=$\frac{{C}_{3}^{3}}{{4}^{3}}$=$\frac{1}{64}$,
∴ξ的分布列为:

 ξ 0 1 2 3
 P $\frac{27}{64}$ $\frac{27}{64}$ $\frac{9}{64}$ $\frac{1}{64}$
Eξ=$0×\frac{27}{64}+1×\frac{27}{64}+2×\frac{9}{64}+3×\frac{1}{64}$=$\frac{3}{4}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,是中档题,解题时要认真审题,注意计算原理、排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知定点T(0,-4),动点Q,R分别在x,y轴上,且$\overrightarrow{TQ}•\overrightarrow{QR}=0$,点P为RQ的中点,点P的轨迹为曲线C,点E是曲线C上一点,其横坐标为2,经过点(0,2)的直线l与曲线C交于不同的两点A,B(不同于点E),直线EA,EB分别交直线y=-2于点M,N.
(I)求点P的轨迹方程;
(II)若O为原点,求证:$∠MON=\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A,B是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右顶点,F为其右焦点,在直线x=4上任取一点P(点P不在x轴上),连结PA,PF,PB.若半焦距c=1,且2kPF=kPA+kPB
(1)求椭圆C的方程;
(2)若直线PF交椭圆于M,N,记△AMB、△ANB的面积分别为S1、S2,求$\frac{S_1}{S_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点F1,F2,且椭圆过点(0,$\sqrt{3}}$),(${\sqrt{3}$,-$\frac{{\sqrt{6}}}{2}}$),且A是椭圆上位于第一象限的点,且△AF1F2的面积S${\;}_{△A{F_1}{F_2}}}$=$\sqrt{3}$.
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P,Q,直线AP,AQ与x轴相交于M,N两点,点C(${\frac{5}{2}$,0),则$\overrightarrow{CM}$•$\overrightarrow{CN}$是否为定值,如果是定值,求出这个定值,如果不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知五个数2,a,m,b,8构成一个等比数列,则圆锥曲线$\frac{x^2}{m}$+$\frac{y^2}{2}$=1的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{2}}}{2}$或$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函象y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,记g(x)=f(x)[f(x)+2f(2)-1],若y=g(x)在区间[$\frac{1}{2}$,2]上是增函数,则实数a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=log${\;}_{\frac{1}{2}}$(1-2cos2x);
(1)判断函数的奇偶性;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ 3x-y-3≤0\end{array}\right.$,则目标函数z=2x+y的取值范围是(  )
A.[1,5]B.[-2,5]C.[1,7]D.[-2,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点P在|x|+|y|≤1表示的平面区域内,点Q在$\left\{\begin{array}{l}{|x-2|≤1}\\{|y-2|≤1}\end{array}\right.$表示的平面区域内.
(1)画出点P和点Q所在的平面区域;
(2)求P与Q之间的最大距离和最小距离.

查看答案和解析>>

同步练习册答案