精英家教网 > 高中数学 > 题目详情
4.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ 3x-y-3≤0\end{array}\right.$,则目标函数z=2x+y的取值范围是(  )
A.[1,5]B.[-2,5]C.[1,7]D.[-2,7]

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求解即可.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x-y+1=0}\\{3x-y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即C(2,3),
代入目标函数z=2x+y得z=2×2+3=4+3=7.
即目标函数z=2x+y的最大值为7.
当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即A(0,1),
代入目标函数z=2x+y得z=2×0+1=1.
即目标函数z=2x+y的最小值为1.
故1≤z≤7,
故选:C.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在极坐标系中,过点M(2,0)的直线l与极轴的夹角α=$\frac{π}{6}$.
(1)将l的极坐标方程写成ρ=f(θ)的形式;
(2)在极坐标系中,以极点为坐标原点,以极轴为x轴的非负半轴建立平面直角坐标系.若曲线C2:$\left\{{\begin{array}{l}{x=3sinθ}\\{y=acosθ}\end{array}}$(θ为参数,a∈R)与直线l有一个公共点在y轴上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学校本课程开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.
(1)求这3名学生选修课所有选法的总数;
(2)求恰有2门选修课没有被这3名学生选择的概率;
(3)求A选修课被这3名学生选择的人数ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,点A,C分别为椭圆C的左顶点和上顶点,点F为椭圆的右焦点,设过点A的直线交椭圆C与另一点M.
(Ⅰ)当F关于直线AM的对称点在y轴上时,求直线AM的斜率;
(Ⅱ)记点F关于点M的对称点为P,连接PC交直线AM与点Q,当点Q是线段AM的中点时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.N为圆x2+y2=1上的一个动点,平面内动点M(x0,y0)满足|y0|≥1且∠OMN=30°(O为坐标原点),则动点M运动的区域面积为(  )
A.$\frac{8π}{3}$-2$\sqrt{3}$B.$\frac{4π}{3}$-$\sqrt{3}$C.$\frac{2π}{3}$+$\sqrt{3}$D.$\frac{4π}{3}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的排法种数是(  )
A.36B.72C.48D.108

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.根据下列条件,分别求A∩B,A∪B:
(1)A={x|x≥0},B={x|x≤0};
(2)A={x|x≥0},B={x|x<2};
(3)A={x|x≥0},B={x|x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.5个人站成一列,重新站队时各人都不站在原来的位置上,共有(  )种不同的站法.
A.42B.44C.46D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在边长为4的等边△ABC中,$\overrightarrow{AB}•\overrightarrow{BC}$的值等于(  )
A.16B.-16C.-8D.8

查看答案和解析>>

同步练习册答案