精英家教网 > 高中数学 > 题目详情
7.已知a=log32,b=(log32)2,c=log4$\frac{2}{3}$,则(  )
A.a<c<bB.c<b<aC.a<b<cD.b<a<c

分析 利用对数函数的性质求解.

解答 解:∵0=log31<a=log32<log33=1,
∴0<b=(log32)2<a=log32,
∵c=log4$\frac{2}{3}$<log41=0,
∴c<b<a.
故选:B.

点评 本题考查三个数的大小的比较,是中档题,解题时要认真审题,注意对数函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合P={n|n=2k-1,k∈N+,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为(  )
A.147B.140C.130D.117

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标线中,以坐标原点为极点,x轴非负半轴为极轴建立坐标系.已知直线与椭圆的极坐标方程分别为l:cosθ+2sinθ=0,C:ρ2=$\frac{4}{co{s}^{2}θ+4si{n}^{2}θ}$.
(1)求直线与椭圆的直角坐标方程;
(2)若P是椭圆C上的一个动点,求P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知平面α和直线a,b,若a∥α,则“b⊥a”是“b⊥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C的极坐标方程是ρ2-4ρcos(θ-$\frac{π}{3}$)-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,且|AB|=3$\sqrt{2}$,求直线的倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.向顶角为120°的等腰三角形ABC(其中AC=BC)内任意投一点M,则AM小于AC的概率为(  )
A.$\frac{{\sqrt{3}π}}{3}$B.$\frac{{\sqrt{3}π}}{9}$C.$\frac{1}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△OAB的边OA,OB上分别有一点P,Q,已知OP:PA=1:2,OQ:QB=3:2,连接AQ,BP,设它们交于点R,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$与$\overrightarrow{b}$表示$\overrightarrow{OR}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,过R作RH⊥AB交AB于点H,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OH}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下面四个命题(其中m,n,l为空间中不同的三条直线,α,β为空间中不同的两个平面):
①m∥n,n∥α⇒m∥α
②α⊥β,α∩β=m,l⊥m⇒l⊥β;
③l⊥m,l⊥n,m?α,n?α⇒l⊥α
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β.
其中错误的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知p:(x-m+1)(x-m-1)<0;q:$\frac{1}{2}$<x<$\frac{2}{3}$,若p是q的必要不充分条件,则实数m的取值范围是$[-\frac{1}{3},\frac{3}{2}]$.

查看答案和解析>>

同步练习册答案