2£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ2-4¦Ñcos£¨¦È-$\frac{¦Ð}{3}$£©-1=0£®ÒÔ¼«µãÎªÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=\sqrt{3}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬ÇÒ|AB|=3$\sqrt{2}$£¬ÇóÖ±ÏßµÄÇãб½Ç¦ÁµÄÖµ£®

·ÖÎö £¨1£©ÓÉ${¦Ñ^2}-4¦Ñcos£¨¦È-\frac{¦Ð}{3}£©-1=0$£¬Õ¹¿ªÎª¦Ñ2-4$£¨\frac{1}{2}¦Ñcos¦È+\frac{\sqrt{3}}{2}¦Ñsin¦È£©$-1=0£¬ÀûÓÃ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³ö¼«×ø±ê·½³Ì£®
£¨II£©½«$\left\{\begin{array}{l}x=tcos¦Á\\ y=\sqrt{3}+tsin¦Á\end{array}\right.$´úÈëÔ²µÄ·½³ÌµÃ»¯¼òµÃt2-2tcos¦Á-4=0£¬ÀûÓÃÏÒ³¤¹«Ê½ $|AB|=|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\sqrt{4{{cos}^2}¦Á+16}=3\sqrt{2}$£¬»¯¼ò¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉ${¦Ñ^2}-4¦Ñcos£¨¦È-\frac{¦Ð}{3}£©-1=0$£¬Õ¹¿ªÎª¦Ñ2-4$£¨\frac{1}{2}¦Ñcos¦È+\frac{\sqrt{3}}{2}¦Ñsin¦È£©$-1=0£¬»¯Îª${x}^{2}+{y}^{2}-2x-2\sqrt{3}y$-1=0£¬
Åä·½µÃÔ²CµÄ·½³ÌΪ${£¨x-1£©^2}+{£¨y-\sqrt{3}£©^2}=5$£¨4·Ö£©
£¨2£©½«$\left\{\begin{array}{l}x=tcos¦Á\\ y=\sqrt{3}+tsin¦Á\end{array}\right.$´úÈëÔ²µÄ·½³ÌµÃ£¨tcos¦Á-1£©2+£¨tsin¦Á£©2=5£¬£¨5·Ö£©
»¯¼òµÃt2-2tcos¦Á-4=0£¬£¨6·Ö£©
ÉèA¡¢BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1¡¢t2£¬Ôò$\left\{\begin{array}{l}{t_1}+{t_2}=2cos¦Á\\{t_1}{t_2}=-4\end{array}\right.$£¬£¨7·Ö£©
ËùÒÔ$|AB|=|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\sqrt{4{{cos}^2}¦Á+16}=3\sqrt{2}$£¬£¨8·Ö£©
ËùÒÔ4cos2¦Á=2£¬$cos¦Á=¡À\frac{{\sqrt{2}}}{2}$£¬$¦Á=\frac{¦Ð}{4}»ò¦Á=\frac{3¦Ð}{4}$£®£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¼°ÆäÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®º¯Êýy=2${\;}^{\frac{1}{x-1}}$µÄ¶¨ÒåÓòÊÇ{x|x¡Ù1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÆ½Ãæ¦Á¡ÉÆ½Ãæ¦Â=l£¬a?¦Â£¬a¡Î¦Á£¬ÄÇôֱÏßaÓëÖ±ÏßlµÄλÖùØÏµÊÇÆ½ÐУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁÐÃüÌâÖУ¬¼ÙÃüÌâÊÇ£¨¡¡¡¡£©
A£®?x¡ÊN*£¬£¨x-2£©2£¾0B£®?x0¡ÊR£¬tanx0=2C£®?x0¡ÊR£¬log2x0£¼2D£®?x¡ÊR£¬3x-2£¾0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®´ÓµãP£¨2£¬-1£©ÏòÔ²x2+y2-2mx-2y+m2=0×÷ÇÐÏߣ¬µ±ÇÐÏß³¤×î¶ÌʱmµÄֵΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªa=log32£¬b=£¨log32£©2£¬c=log4$\frac{2}{3}$£¬Ôò£¨¡¡¡¡£©
A£®a£¼c£¼bB£®c£¼b£¼aC£®a£¼b£¼cD£®b£¼a£¼c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª$\overrightarrow{a}$=£¨1£¬1£¬0£©£¬$\overrightarrow{b}$=£¨-1£¬0£¬2£©£¬Ôò|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{17}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®É躯Êýf£¨x£©=x2-alnx£¬a¡ÊR
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä
£¨2£©Èô¹ØÓÚxµÄ·½³Ìf£¨x£©=£¨a-2£©x+cÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ùx1x2£¬ÇóÖ¤£ºf¡ä£¨$\frac{{x}_{1}{+x}_{2}}{2}$£©£¾a-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª|${\overrightarrow a}$|=1£¬|${\overrightarrow b$|=2$\sqrt{3}$£¬$\overrightarrow a$•£¨${\overrightarrow b$-$\overrightarrow a}$£©=-4£¬ÔòÏòÁ¿$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A£®$\frac{5¦Ð}{6}$B£®$\frac{2¦Ð}{3}$C£®$\frac{¦Ð}{3}$D£®$\frac{¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸