精英家教网 > 高中数学 > 题目详情
17.已知p:(x-m+1)(x-m-1)<0;q:$\frac{1}{2}$<x<$\frac{2}{3}$,若p是q的必要不充分条件,则实数m的取值范围是$[-\frac{1}{3},\frac{3}{2}]$.

分析 求出p的等价条件,利用必要不充分条件的定义建立不等式关系进行求解即可.

解答 解:p的等价条件是m-1<x<m+1,
若p是q的必要不充分条件,
则$\left\{\begin{array}{l}{m+1≥\frac{2}{3}}\\{m-1≤\frac{1}{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{m≥-\frac{1}{3}}\\{m≤\frac{3}{2}}\end{array}\right.$,即$-\frac{1}{3}$≤m≤$\frac{3}{2}$,
故答案为:$[-\frac{1}{3},\frac{3}{2}]$.

点评 本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件建立不等式关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知a=log32,b=(log32)2,c=log4$\frac{2}{3}$,则(  )
A.a<c<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若曲线f(x)=x3+x-2在点P0处的切线垂直于直线x+4y+3=0,则点P0的坐标为(  )
A.(1,0)B.(2,8)C.(2,8)或(-1,-4)D.(1,0)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数p:x2-4x-12≤0,q:(x-m)(x-m-1)≤0
(Ⅰ)若m=2,那么p是q的什么条件;
(Ⅱ)若q是p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知|${\overrightarrow a}$|=1,|${\overrightarrow b$|=2$\sqrt{3}$,$\overrightarrow a$•(${\overrightarrow b$-$\overrightarrow a}$)=-4,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)是定义域为R且最小正周期为2π的函数,且有f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤π}\\{cosx,-π<x<0}\end{array}\right.$,则f(-$\frac{13π}{4}$)=(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器,为使其容积最大,截下的小正方形边长应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=-2+2sinφ}\end{array}\right.$(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(I)求圆C的极坐标方程;
(Ⅱ)若直线l的极坐标方程是ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$,求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在△ABC中,点M是BC中点,点N在AC上,且AN=2NC,AM交BN于点P,则AP:PM的值为(  )
A.$\frac{3}{2}$B.2C.4D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案