精英家教网 > 高中数学 > 题目详情
5.已知实数p:x2-4x-12≤0,q:(x-m)(x-m-1)≤0
(Ⅰ)若m=2,那么p是q的什么条件;
(Ⅱ)若q是p的充分不必要条件,求实数m的取值范围.

分析 (Ⅰ)分别解出关于p,q的不等式,将m=2代入q,结合集合的包含关系判断p,q的充分必要性即可;
(Ⅱ)根据集合的包含关系解出关于m的不等式组,从而求出m的范围.

解答 解:实数p:x2-4x-12≤0,解得:-2≤x≤6,
q:(x-m)(x-m-1)≤0,解得:m≤x≤m+1,
令A=[-2,6],B=[m,m+1],
(Ⅰ)若m=2,则B=[2,3],
B?A,那么p是q的必要不充分条件;
(Ⅱ)若q是p的充分不必要条件,
即B?A,则$\left\{\begin{array}{l}{m≥-2}\\{m+1≤6}\end{array}\right.$,解得:-2≤m≤5(等号不同时成立),
∴m∈[-2,5)或m∈(-2,5].

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知平面α和直线a,b,若a∥α,则“b⊥a”是“b⊥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下面四个命题(其中m,n,l为空间中不同的三条直线,α,β为空间中不同的两个平面):
①m∥n,n∥α⇒m∥α
②α⊥β,α∩β=m,l⊥m⇒l⊥β;
③l⊥m,l⊥n,m?α,n?α⇒l⊥α
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β.
其中错误的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式组$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+1≥0}\\{2x+3y-4≤0}\end{array}\right.$,表示的平面区域绕着原点旋转一周所得到的平面图形的面积为(  )
A.$\frac{12π}{25}$B.$\frac{17π}{25}$C.D.$\frac{16π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法中,正确的是(  )
A.命题“若x≠2或y≠7,则x+y≠9”的逆命题为真命题
B.命题“若x2=4,则x=2”的否命题是“若x2=4,则x≠2”
C.命题“若x2<1,则-1<x<1”的逆否命题是“若x<-1或x>1,则x2>1”
D.若命题p:?x∈R,x2-x+1>0,q:?x0∈(0,+∞),sinx0>1,则(¬p)∨q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2-kx-8在区间[2,5]上具有单调性,则实数k的取值范围是(-∞,4]∪[10,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知p:(x-m+1)(x-m-1)<0;q:$\frac{1}{2}$<x<$\frac{2}{3}$,若p是q的必要不充分条件,则实数m的取值范围是$[-\frac{1}{3},\frac{3}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{e}^{x}}{m}$+$\frac{m}{{e}^{x}}$(其中m>0,e为自然对数的底数)是定义在R上的偶函数.
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并用单调性定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F2,F1是双曲线 $\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆内,则双曲线的离心率e为(  )
A.($\sqrt{3}$,3)B.(3,+∞)C.($\sqrt{2}$,2)D.(2,+∞)

查看答案和解析>>

同步练习册答案