精英家教网 > 高中数学 > 题目详情
15.已知F2,F1是双曲线 $\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆内,则双曲线的离心率e为(  )
A.($\sqrt{3}$,3)B.(3,+∞)C.($\sqrt{2}$,2)D.(2,+∞)

分析 首先求出F2到渐近线的距离,利用F2关于渐近线的对称点恰落在以F1为圆心,|OF1|为半径的圆上,可得△MF1F2为钝角三角形,运用三边关系,即可求出双曲线的离心率.

解答 解:由题意,F1(0,-c),F2(0,c),
一条渐近线方程为y=$\frac{a}{b}$x,则F2到渐近线的距离为$\frac{bc}{\sqrt{{a}^{2}+{c}^{2}}}$=b.
设F2关于渐近线的对称点为M,F2M与渐近线交于A,
∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为钝角,
∴△MF1F2为钝角三角形,
∴4c2>c2+4b2
∴3c2>4(c2-a2),∴c2>4a2
∴c>2a,
∴e>2.
故选:D.

点评 本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知实数p:x2-4x-12≤0,q:(x-m)(x-m-1)≤0
(Ⅰ)若m=2,那么p是q的什么条件;
(Ⅱ)若q是p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=-2+2sinφ}\end{array}\right.$(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(I)求圆C的极坐标方程;
(Ⅱ)若直线l的极坐标方程是ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$,求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,AD是⊙O的直径,AB是⊙O的切线,直线BMN交AD的延长线于点C,BM=MN=NC,AB=2,求CD的长和⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设$\overrightarrow{a}$=(x,3),$\overrightarrow{b}$=(2,-1),根据下列条件求x的取值范围.
(1)$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角;
(2)$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为直角;
(3)$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在如下程序框图中,已知f0(x)=sinx,则输出的结果是(  )
A.sinxB.cosxC.-sinxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在△ABC中,点M是BC中点,点N在AC上,且AN=2NC,AM交BN于点P,则AP:PM的值为(  )
A.$\frac{3}{2}$B.2C.4D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.阅读以下求1+2+3+…+n的值的过程:
因为(n+1)2-n2=2n+1
n2-(n-1)2=2(n-1)+1

22-12=2×1+1
以上各式相加得(n+1)2-1=2×(1+2+3+…+n)+n
所以1+2+3+…+n=$\frac{{n}^{2}+2n-n}{2}$=$\frac{n(n+1)}{2}$.
类比上述过程,求12+22+32+…+n2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{3x+1}{{x}^{2}-1}$,求f(0),f(-2),f(a),f(x2),f($\frac{1}{x}$).

查看答案和解析>>

同步练习册答案