分析 (1)根据f(x)为R上的偶函数,从而有f(-1)=f(1),这样即可得出$m-\frac{1}{m}=0$,由m>0从而得出m=1;
(2)写出$f(x)={e}^{x}+\frac{1}{{e}^{x}}$,根据单调性的定义,设任意的x1>x2>0,然后作差,通分,提取公因式,从而得到$f({x}_{1})-f({x}_{2})=({e}^{{x}_{1}}-{e}^{{x}_{2}})(1-\frac{1}{{e}^{{x}_{1}+{x}_{2}}})$,根据x1>x2>0及指数函数的单调性便可判断f(x1),f(x2)的关系,从而得出f(x)在(0,+∞)上的单调性.
解答 解:(1)f(x)为R上的偶函数;
∴f(-1)=f(1);
即$\frac{1}{me}+me=\frac{e}{m}+\frac{m}{e}$;
∴$(m-\frac{1}{m})(e-\frac{1}{e})=0$;
∴$m-\frac{1}{m}=0$;
∵m>0,∴解得m=1;
(2)$f(x)={e}^{x}+\frac{1}{{e}^{x}}$,设x1>x2>0,则:
$f({x}_{1})-f({x}_{2})={e}^{{x}_{1}}+\frac{1}{{e}^{{x}_{1}}}-{e}^{{x}_{2}}-\frac{1}{{e}^{{x}_{2}}}$=$({e}^{{x}_{1}}-{e}^{{x}_{2}})(1-\frac{1}{{e}^{{x}_{1}+{x}_{2}}})$;
∵x1>x2>0;
∴${e}^{{x}_{1}}>{e}^{{x}_{2}}$,x1+x2>0,${e}^{{x}_{1}+{x}_{2}}>1$;
∴${e}^{{x}_{1}}-{e}^{{x}_{2}}>0,1-\frac{1}{{e}^{{x}_{1}+{x}_{2}}}>0$;
∴f(x1)>f(x2);
∴f(x)在(0,+∞)上是增函数.
点评 考查偶函数的定义,函数单调性的定义,根据单调性定义判断一个函数单调性的方法和过程,作差的方法比较f(x1),f(x2),作差后是分式的一般要通分,一般要提取公因式,以及指数函数的单调性.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com