精英家教网 > 高中数学 > 题目详情
2.已知:平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC、BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度(  )
A.13B.$\sqrt{151}$C.12$\sqrt{3}$D.15

分析 如图所示,连接BC.由DB⊥AB,平面α⊥平面β,α∩β=l=AB,可得BD⊥平面α,BD⊥BC,又AC⊥AB,利用勾股定理即可得出.

解答 解:如图所示,连接BC.
∵DB⊥AB,平面α⊥平面β,α∩β=l=AB,
∴BD⊥平面α,BC?平面α,∴BD⊥BC,
又AC⊥AB,
∴CD2=BD2+BC2=BD2+AC2+BC2
=122+32+42=132
∴CD=13,
故选:A.

点评 本题考查了空间位置关系、线面面面垂直的判定性质定理、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知△ABC的内角A,B,C所对的边分别为a,b,c,若3acosC=2ccosA,tanA=$\frac{1}{3}$,则角B的度数为(  )
A.120°B.135°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.△ABC为等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分别是边AC和AB的中点,现将△ADE沿DE折起,使面ADE⊥面DEBC,H、F分别是边AD和BE的中点,平面BCH与AE、AF分别交于I、G两点
(Ⅰ)求证:IH∥BC;
(Ⅱ)求直线AE与平面角GIC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l:4x+y-4=0,下列曲线:x2=-y,$\frac{y^2}{16}$-x2=1,$\frac{x^2}{3}$+$\frac{y^2}{2}$=1,其中与直线l只有一个公共点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,a4=5,a7=11.设bn=(-1)n•an,则数列{bn}的前100项之和S100为(  )
A.-200B.-100C.200D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=2x+a2x-2a的零点在区间(0,1)上,则a的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,1)C.($\frac{1}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数既是偶函数,又在区间(1,2)上是增函数的是(  )
A.y=-$\frac{2}{x}$B.y=x+1C.y=$\sqrt{{x}^{2}-4}$D.y=2x2-|x|+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线的离心率为$\frac{\sqrt{7}}{2}$,且其顶点到其渐近线的距离为$\frac{2\sqrt{21}}{7}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1
C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1或$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1或$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.阅读如图所示的程序框图,运行相应的程序,若输入n的值为8,则输出S的值为(  )
A.546B.547C.1067D.1066

查看答案和解析>>

同步练习册答案