精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=sin({2x+\frac{π}{3}})-cos({2x+\frac{π}{6}})-\sqrt{3}$cos2x,x∈R.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,B为锐角且f(B)=$\sqrt{3},AC=\sqrt{3}$,△ABC周长为3$\sqrt{3}$,求AB,AC.

分析 (I)使用两角和差的三角函数公式化简f(x),根据正弦函数的单调区间列出不等式解出;
(II)求出B,利用余弦定理列方程得出.

解答 解:(Ⅰ)f(x)=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x=si2x-$\sqrt{3}$cos2x=2sin(2x-$\frac{π}{3}$).
令$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$,解得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12}$,
∴f(x)的单调递增区间为$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}]\;({k∈Z})$.
(Ⅱ)∵$f(B)=\sqrt{3}$,∴$sin({2B-\frac{π}{3}})=\frac{{\sqrt{3}}}{2}$
∵$0<B<\frac{π}{2}$,∴$-\frac{π}{3}<2B-\frac{π}{3}<\frac{2π}{3}$,
∴$2B-\frac{π}{3}=\frac{π}{3}$,∴$B=\frac{π}{3}$.
∴$cosB=\frac{{A{B^2}+B{C^2}-A{C^2}}}{2AB•BC}=\frac{1}{2}$,
又 $AC=\sqrt{3}$,△ABC的周长为$3\sqrt{3}$.
∴$AB+BC=2\sqrt{3}$,AB•BC=3,
解得$AB=\sqrt{3}$,$BC=\sqrt{3}$.

点评 本题考查了三角函数的恒等变换,正弦函数的性质,余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.如图,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,$\overrightarrow{DQ}=λ\overrightarrow{DC}$,$\overrightarrow{CP}=(1-λ)\overrightarrow{CB}$,若集合M=$\{x|x=\overrightarrow{AP}•\overrightarrow{AQ}\}$,N=$\left\{{x\left|{x=\frac{{{a^2}+{b^2}+1}}{3(a-b)},a>b,ab=1}\right.}\right\}$.则M∩N=[$\frac{2\sqrt{3}}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知函数f(x)=tanx-x(0<x<$\frac{π}{2}$).
(1)试判断函数f(x)的单调性,并说明理由;
(2)若数列{an}满足0<a1<$\frac{π}{4}$,an+1=f(an),n∈N*,证明:0<an+1<an<$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设锐角△ABC的外接圆圆心为O,半径为25,弦AB=48,AC=40,则cos∠BAC的值为$\frac{3}{5}$,$\overrightarrow{OA}$$•\overrightarrow{OB}$+$\overrightarrow{OB}$$•\overrightarrow{OC}$+$\overrightarrow{OC}$$•\overrightarrow{OA}$=-877.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知复数z1=-$\sqrt{5}$i,z2=6-6i.
(1)分别将z1、z2化为极坐标形式;
(2)计算:$\frac{{z}_{1}}{{z}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列四个函数中:①y=-$\sqrt{x}$;②y=log2(x+1);③y=-$\frac{1}{x+1}$;④y=${(\frac{1}{2})^{x-1}}$.在(0,+∞)上为减函数的是①④.(填上所有正确选项的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知公比不等于1的等比数列{an},满足:a3=3,S3=9,其中Sn为数列{an}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2$\frac{3}{a_{2n+3}}$,若cn=$\frac{4}{b_n•b_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示的程序运行后输出的结果是(  )
A.-5B.-3C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(2x-1)(3-2x)5的展开式中,含x次数最高的项的系数是-64(用数字作答).

查看答案和解析>>

同步练习册答案