精英家教网 > 高中数学 > 题目详情
12.(2x-1)(3-2x)5的展开式中,含x次数最高的项的系数是-64(用数字作答).

分析 利用二项式定理展开式的通项公式即可得出.

解答 解:(3-2x)5的展开式的通项公式:Tr+1=${∁}_{5}^{r}$35-r(-2x)r
令r=5,
可得:(2x-1)(3-2x)5的展开式中,含x次数最高的项的系数为2×(-2)5=-64.
故答案为:-64.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=sin({2x+\frac{π}{3}})-cos({2x+\frac{π}{6}})-\sqrt{3}$cos2x,x∈R.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,B为锐角且f(B)=$\sqrt{3},AC=\sqrt{3}$,△ABC周长为3$\sqrt{3}$,求AB,AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=2,a2=6,且数列{an-1-an}{n∈N*}是公差为2的等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,求满足不等式Sn>$\frac{2015}{2016}$的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,为了估测某塔的高度,在同一水平面的A,B两点处进行测量,在点A处测得塔顶C在西偏北20°的方向上,仰角为60°;在点B处测得塔顶C在东偏北40°的方向上,仰角为30°.若A,B两点相距130m,则塔的高度CD=10$\sqrt{39}$ m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=|lnx|-$\frac{1}{8}$x2的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD的底面是矩形,△PAD为等边三角形,且平面PAD⊥平面ABCD,E,F分别为PC和BD的中点.
(1)证明:EF∥平面PAD;
(2)证明:平面PDC⊥平面PAD;
(3)若AB=1,AD=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{a}^{2}+1}{a}$lnx+$\frac{1}{x}$-x-3(a>1)
(Ⅰ)讨论函数f(x)在(0,1)上的单调区间
(Ⅱ)当a≥3时,曲线y=f(x)上总存在相异两点P,Q,使得曲线y=f(x)在P,Q处的切线互相平行,求线段PQ中点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)直线l的方程为(a+1)x+y+2-a=0(a∈R).若l在两坐标轴上的截距相等,求a的值;
(2)已知A(-2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z1=2+2i,z2=1-3i(i为虚数单位),那么复数$\frac{{{z}_{1}}^{2}}{{z}_{2}}$所对应的点在复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案