精英家教网 > 高中数学 > 题目详情
设有关于x的一元二次方程x2-2ax+b2=0.
(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率.
(2)若a是从区间[0,3]内任取的一个数,b=2,求上述方程没有实根的概率.
由题意知本题是一个古典概型,
设事件A为“方程x2-2ax+b2=0无实根”
当a>0,b>0时,方程x2-2ax+b2=0无实根的充要条件为
△=4a2-4b2=4(a2-b2)<0,即a<b
(1)基本事件共12个:(0,0)(0,1),(0,2),(1,0)(1,1),(1,2),(2,0),(2,1),
(2,2),(3,0),(3,1),(3,2).
其中第一个数表示a的取值,第二个数表示b的取值.
事件A包含3个基本事件(0,1),(0,2)(1,2),
∴事件A发生的概率为P(A)=
3
12
=
1
4

(2)由题意知本题是一个几何概型,
试验的所有基本事件所构成的区域为:{(a,b)|0≤a≤3,b=2},
其中构成事件B的区域为{(a,b)|0≤a≤3,b=2,a<b}
∴所求概率为P(B)=
2
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

地为绿化环境,移栽了银杏树棵,梧桐树棵.它们移栽后的成活率分别
,每棵树是否存活互不影响,在移栽的棵树中:
(1)求银杏树都成活且梧桐树成活棵的概率;
(2)求成活的棵树的分布列与期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两位同学一起参加某单位的招聘面试,单位负责人对他们说:“我们要从面试的人中招聘3人,假设每位参加面试的人被招聘的概率相等,你们俩同时被招聘的概率是
1
70
”.根据这位负责人的话可以推断出这次参加该单位招聘面试的人有(  )
A.44人B.42人C.22人D.21人

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一数学兴趣小组利用几何概型的相关知识作实验计算圆周率,他们向一个边长为1米的正方形区域均匀撒豆,测得正方形区域有豆5120颗,正方形的内切圆区域有豆4608颗,问他们所测得的圆周率为______(小数点后保留一位数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为
1
4
,得到黑球或黄球的概率是
5
12
,得到黄球或绿球的概率是
1
2
,试求得到黑球、黄球、绿球的概率各是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

任意说出星期一到星期日中的两天(不重复),其中恰有一天是星期六的概率是(  )
A.
1
7
B.
2
7
C.
1
49
D.
2
49

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,如图,AB是圆柱的母线,BC是圆柱底面圆的直径,D是圆柱底面圆上与B、C不重合的点,用<MN,EF>表示直线MN、EF的夹角.
(Ⅰ)在三棱锥A-BCD中,写出所有两棱的夹角(不写出具体的角度值);
(Ⅱ)在三棱锥A-BCD中的六条棱中取两条棱,求这两条棱互相垂直的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是(   )
A.0.42B.0.28C.0.7D.0.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从5张100元,3张200元,2张300元的奥运会决赛门票中任取3张,则所取3张中于至少有2张价格相同的概率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案