精英家教网 > 高中数学 > 题目详情
14.不等式x(1-2x)≤0的解集为{x|x≤0或x≥$\frac{1}{2}$}.

分析 把不等式化为x(2x-1)≥0,求出解集即可.

解答 解:不等式x(1-2x)≤0可化为x(2x-1)≥0,
解得x≤0或x≥$\frac{1}{2}$,
所以不等式的解集为{x|x≤0或x≥$\frac{1}{2}$}.
故答案为{x|x≤0或x≥$\frac{1}{2}$}.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为(  )
x
 
3
 
-2
 
4
 
$\sqrt{2}$
 
y
 
$-2\sqrt{3}$
 
0
 
-4
 
$\frac{{\sqrt{2}}}{2}$
 
A.$\sqrt{2}-1$B.$\sqrt{3}-1$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知(0.81.2m<(1.20.8m,则实数m的取值范围是(  )
A.(-∞,0)B.(0,1)∪(1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知以$y=\frac{{\sqrt{6}}}{3}x$为一条渐近线的双曲线C的右焦点为$F(\sqrt{5},0)$.
(1)求该双曲线C的标准方程;
(2)若斜率为2的直线l在双曲线C上截得的弦长为$\sqrt{6}$,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,圆C的参数方程$\left\{\begin{array}{l}x=1+cosφ\\ y=sinφ\end{array}\right.(φ为参数)$,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程是l,射线$OM:θ=\frac{π}{3}$与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数中,表示同一函数的是(  )
A.y=x+1与y=$\frac{{x}^{2}+x}{x}$B.f(x)=$\frac{{x}^{2}}{(\sqrt{x})^{2}}$与g(x)=x
C.$f(x)=|x|与g(x)=\root{n}{x^n}$D.$f(x)=x与g(t)={log_a}{a^t}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件
②“当x为某一实数时可使x2<0”是不可能事件
③“明天广州要下雨”是必然事件
④“从100个灯泡中有5个次品,从中取出5个,5个都是次品”是随机事件,
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|(x-1)(x-2)<0},集合B={x|1<x<3},则A∪B=(  )
A.{x|-3<x<3}B.{x|1<x<2}C.{x|-1<x<1}D.{x|1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x>0,则函数y=x+$\frac{1}{2x+1}$的最小值为$\sqrt{2}-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案