精英家教网 > 高中数学 > 题目详情
3.设集合A={x|(x-1)(x-2)<0},集合B={x|1<x<3},则A∪B=(  )
A.{x|-3<x<3}B.{x|1<x<2}C.{x|-1<x<1}D.{x|1<x<3}

分析 先分别求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={x|(x-1)(x-2)<0}={x|1<x<2},
集合B={x|1<x<3},
∴A∪B={x|1<x<3}.
故选:D.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=1,a2=3,若|an+1-an|=2n(n∈N*),且{a2n-1}是递增数列、{a2n}是递减数列,则$\underset{lim}{n→∞}$$\frac{{a}_{2n-1}}{{a}_{2n}}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式x(1-2x)≤0的解集为{x|x≤0或x≥$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.要得到y=3×($\frac{1}{3}$)x的图象,只需将函数y=($\frac{1}{3}$)x的图象(  )
A.向左平移3个单位B.向右平移3个单位C.向左平移1个单位D.向右平移1个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.$\frac{1}{2}$sin75°+$\frac{\sqrt{3}}{2}$sin15°的值等于$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.F1,F2是椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两焦点,E上任一点P满足$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$≥$\frac{1}{2}{a^2}$,则椭圆E的离心率的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某人从甲地去乙地共走了500m,途经一条宽为x m的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知该物品能被找到的概率为$\frac{24}{25}$,则河宽为(  )
A.80mB.20mC.40mD.50m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知{an}是公差不为零的等差数列,a1=1且a1,a3,a9,成等比数列.
(1)求数列{an}的通项公式;
(2)求数列$\{{2^{a_n}}+{a_n}\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义平面向量之间的一种运算“⊙“如下:对任意的向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(p,q)(其中m,n,p,q均为实数),$\overrightarrow{a}$⊙$\overrightarrow{b}$=mq-np.在下列说法中:
(1)若向量与$\overrightarrow{b}$共线,则$\overrightarrow{a}$⊙$\overrightarrow{b}$=0;
(2)$\overrightarrow{a}$⊙$\overrightarrow{b}$=$\overrightarrow{b}$⊙$\overrightarrow{a}$;
(3)对任意;
(4)($\overrightarrow{a}$⊙$\overrightarrow{b}$)2+($\overrightarrow{a}$•$\overrightarrow{b}$)2=|$\overrightarrow{a}$|2|$\overrightarrow{b}$|2(其中$\overrightarrow{a}$•$\overrightarrow{b}$表示与$\overrightarrow{b}$的数量积,|$\overrightarrow{a}$|表示向量的模).
正确的说法是(1)(3)(4).(写出所有正确的说法的序号)

查看答案和解析>>

同步练习册答案