精英家教网 > 高中数学 > 题目详情
11.要得到y=3×($\frac{1}{3}$)x的图象,只需将函数y=($\frac{1}{3}$)x的图象(  )
A.向左平移3个单位B.向右平移3个单位C.向左平移1个单位D.向右平移1个单位

分析 根据指数的运算性质y=3×($\frac{1}{3}$)x即为y=($\frac{1}{3}$)x-1的图象,根据函数的图象的平移法则:左加右减,确定平移量即可,

解答 解:y=3×($\frac{1}{3}$)x即为y=($\frac{1}{3}$)x-1的图象,只需将函数y=($\frac{1}{3}$)x的图象向右平移1个单位,
故选:D.

点评 本题考查的知识点是指数函数的图象变换,其中熟练掌握函数图象的平移法则“左加右减,上加下减”是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{3}$sin2x+cos2($\frac{π}{4}$-x)-$\frac{1+\sqrt{3}}{2}$(x∈R).
(1)求函数f(x)在区间[0,$\frac{π}{2}$]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)=$\frac{1}{2}$,求$\frac{BC}{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知以$y=\frac{{\sqrt{6}}}{3}x$为一条渐近线的双曲线C的右焦点为$F(\sqrt{5},0)$.
(1)求该双曲线C的标准方程;
(2)若斜率为2的直线l在双曲线C上截得的弦长为$\sqrt{6}$,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数中,表示同一函数的是(  )
A.y=x+1与y=$\frac{{x}^{2}+x}{x}$B.f(x)=$\frac{{x}^{2}}{(\sqrt{x})^{2}}$与g(x)=x
C.$f(x)=|x|与g(x)=\root{n}{x^n}$D.$f(x)=x与g(t)={log_a}{a^t}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件
②“当x为某一实数时可使x2<0”是不可能事件
③“明天广州要下雨”是必然事件
④“从100个灯泡中有5个次品,从中取出5个,5个都是次品”是随机事件,
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式(x+$\frac{1}{2}$)($\frac{3}{2}$-x)≥0的解集是(  )
A.{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$}B.{x|x≤-$\frac{1}{2}$或x≥$\frac{3}{2}$}C.{x|x<-$\frac{1}{2}$或x>$\frac{3}{2}$}D.{x|-$\frac{1}{2}$<x<$\frac{3}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|(x-1)(x-2)<0},集合B={x|1<x<3},则A∪B=(  )
A.{x|-3<x<3}B.{x|1<x<2}C.{x|-1<x<1}D.{x|1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,侧面PAD同时垂直侧面PAB与侧面PDC.若PA=AB=AD=$\frac{{\sqrt{3}}}{3}$PB,则$\frac{BC}{AD}$=$\frac{3}{2}$,直线PC与底面ABCD所成角的正切值为$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=ax3+bx+2014x2017-4其中a,b为常数,若f(-2)=2,则f(2)=(  )
A.-2B.-4C.-6D.-10

查看答案和解析>>

同步练习册答案