精英家教网 > 高中数学 > 题目详情
14.设非零向量$\overrightarrow c,\overrightarrow d$,规定:$\overrightarrow c?\overrightarrow d=|{\overrightarrow c}||{\overrightarrow d}|sinθ$(其中$θ=<\overrightarrow c,\overrightarrow d>$),F1、F2是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点,点A,B分别是椭圆C的右顶点、上顶点,若$\overrightarrow{OA}?\overrightarrow{OB}=2\sqrt{3}$,椭圆C的长轴的长为4.
(1)求椭圆C的方程;
(2)过点F2的直线l交椭圆C于点M,N,若$\overrightarrow{OM}?\overrightarrow{ON}=\frac{{12\sqrt{2}}}{7}$,求直线l的方程.

分析 (1)由题意求出a利用新定义求出b,即可求解椭圆C的方程.
(2)①当直线l为:y=0,验证是否符合题意;②当直线l不在x轴上时,由(1)知F2为(1,0),设l为:x=my+1,将其代入椭圆C的方程利用韦达定理以及弦长公式,通过三角形的面积,求出m,得到直线方程.

解答 解:(1)由题意:2a=4⇒a=2,$\overrightarrow{OA}?\overrightarrow{OB}=absin{90°}=ab=2\sqrt{3}$,
∴$b=\sqrt{3}$,∴所求椭圆C为:$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(2)①当直线l为:y=0,即在x轴上时,$\overrightarrow{OM}?\overrightarrow{ON}=|{\overrightarrow{OM}}||{\overrightarrow{ON}}|sin{180°}=0≠\frac{{12\sqrt{2}}}{7}$不符合题意;
②当直线l不在x轴上时,由(1)知F2为(1,0),
设l为:x=my+1,将其代入椭圆C的方程得:(3m2+4)x2+6my-9=0,
∴$\left\{{\begin{array}{l}{{y_1}+{y_2}=-\frac{6m}{{3{m^2}+4}}}\\{{y_1}{y_2}=-\frac{9}{{3{m^2}+4}}}\end{array}}\right.$,
∴$|{{y_1}-{y_2}}|=\sqrt{({y_1}+{y_2}{)^2}-4{y_1}{y_2}}=\sqrt{\frac{{36{m^2}}}{{{{(3{m^2}+4)}^2}}}+\frac{36}{{3{m^2}+4}}}=\frac{{12\sqrt{{m^2}+1}}}{{3{m^2}+4}}$,
又$\overrightarrow{OM}?\overrightarrow{ON}=|{\overrightarrow{OM}}||{\overrightarrow{ON}}|sin<\overrightarrow{OM},\overrightarrow{ON}>=2{S_{△OAB}}$=$2×\frac{1}{2}×|{O{F_2}}|×|{{y_1}-{y_2}}|=|{{y_1}-{y_2}}|=\frac{{12\sqrt{{m^2}+1}}}{{3{m^2}+4}}=\frac{{12\sqrt{2}}}{7}$,
解得:m2=1或${m^2}=-\frac{17}{18}$(舍去),即m=±1.
综上,直线l的方程为:y=x-1或y=-x+1.

点评 本题考查椭圆的方程的求法,椭圆的简单性质的应用,直线与椭圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数$y=tan({x-\frac{π}{3}})$的单调增区间为$({kπ-\frac{π}{6},kπ+\frac{5π}{6}}),k∈Z$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2lnx-$\frac{1}{2}$ax2-bx-1.
(1)当a=b=1时,求函数f(x)的最大值;
(2)当b=1,a≤0时,求函数f(x)的单调区间;
(3)当a=0,b=-4时,方程x2+2mf(x)=0有唯一解,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x∈R,则“|x-2|<1”是“x2+x-2>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(Ⅰ)比较(x+1)(x-3)与(x+2)(x-4)的大小.
(Ⅱ)一段长为36m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大.最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1的底面是边长为2的等边三角形,AA1⊥底面ABC,点E,F分别是棱CC1,BB1上的点,且EC=B1F=2FB.
(1)证明:平面AEF⊥平面ACC1A1
(2)若AA1=3,求点E到平面ACF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商场对甲、乙两种品牌的商品进行为期100天的营销活动,为调查这100天的日销售情况,随机抽取了10天的日销售量(单位:件)作为样本,样本数据的茎叶图如图.若日销量不低于50件,则称当日为“畅销日”.
(Ⅰ)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;
(Ⅱ)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的2×2列联表,并判断是否有99%的把握认为品牌与“畅销日”天数有关.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828
畅销日天数非畅销日天数合计
甲品牌5050100
乙品牌3070100
合计80120200

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$与x=1时都取得极值
(1)求函数y=f(x)在点M(-1,f(-1))处的切线方程
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=\sqrt{x-1}+lg({x+1})$的定义域是(  )
A.(-1,1]B.(-1,1)C.[-1,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案