精英家教网 > 高中数学 > 题目详情
2.设x∈R,则“|x-2|<1”是“x2+x-2>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 分别解出不等式:|x-2|<1,x2+x-2>0,即可判断出关系.

解答 解:由|x-2|<1,解得1<x<3.
由x2+x-2>0,解得1<x或x<-2.
∴“|x-2|<1”是“x2+x-2>0”的充分不必要条件.
故选:A.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若不等式-3≤x2-2ax+a≤-2有唯一解,则a的值是(  )
A.2或-1B.$\frac{{-1±\sqrt{5}}}{2}$C.$\frac{{1±\sqrt{5}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.参数方程$\left\{\begin{array}{l}{x=3t+2}\\{y=t-1}\end{array}\right.$(t为参数)的普通方程为x-3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.
(1)若数列{an}是首项和公差都是1的等差数列,求b1,b2,并证明数列{bn}是等比数列;
(2)若数列{bn}是等比数列,数列{an}是否是等差数列,若是请求出通项公式,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b∈R,i是虚数单位,若a+i=2-bi,则(a+bi)2=(  )
A.3-4iB.3+4iC.4-3iD.4+3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=(1-mx)ln(1+x).
(1)若当0<x<1时,函数f(x)的图象恒在直线y=x上方,求实数m的取值范围;
(2)求证:$e>{(\frac{1001}{1000})^{1000.4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设非零向量$\overrightarrow c,\overrightarrow d$,规定:$\overrightarrow c?\overrightarrow d=|{\overrightarrow c}||{\overrightarrow d}|sinθ$(其中$θ=<\overrightarrow c,\overrightarrow d>$),F1、F2是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点,点A,B分别是椭圆C的右顶点、上顶点,若$\overrightarrow{OA}?\overrightarrow{OB}=2\sqrt{3}$,椭圆C的长轴的长为4.
(1)求椭圆C的方程;
(2)过点F2的直线l交椭圆C于点M,N,若$\overrightarrow{OM}?\overrightarrow{ON}=\frac{{12\sqrt{2}}}{7}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知不共线的向量$\overrightarrow a,\overrightarrow b,|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,\overrightarrow a•({\overrightarrow b-\overrightarrow a})=1$,则$|{\overrightarrow a-\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{7}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出如下命题:
①“在△ABC中,若sinA=sinB,则A=B”为真命题;
②若动点P到两定点F1(-4,0),F2(4,0)的距离之和为8,则动点P的轨迹为线段;
③若p∧q为假命题,则p,q都是假命题;
④设x∈R,则“x2-3x>0”是“x>4”的必要不充分条件;
⑤若实数1,m,9成等比数列,则圆锥曲线$\frac{x^2}{m}+{y^2}=1$的离心率为$\frac{{\sqrt{6}}}{3}$.
其中,所有正确的命题序号为①②④.

查看答案和解析>>

同步练习册答案