19£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨{¦È+\frac{¦Ð}{4}}£©$£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¸³öÆä±íʾºÎÖÖÇúÏߣ»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÈôµãPµÄÖ±½Ç×ø±êΪ£¨1£¬0£©£¬ÊÔÇóµ±$¦Á=\frac{¦Ð}{4}$ʱ£¬|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©ÇúÏßC2£º$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{¦Ð}{4}£©$£¬¿ÉÒÔ»¯Îª${¦Ñ^2}=2\sqrt{2}¦Ñcos£¨¦È+\frac{¦Ð}{4}£©$£¬¦Ñ2=2¦Ñcos¦È-2¦Ñsin¦È£¬¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¸³öÆä±íʾºÎÖÖÇúÏߣ»
£¨2£©µ±$¦Á=\frac{¦Ð}{4}$ʱ£¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨Îª²ÎÊý£©£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåÇóµ±$¦Á=\frac{¦Ð}{4}$ʱ£¬|PA|+|PB|µÄÖµ£®

½â´ð ½â£º£¨1£©ÇúÏßC2£º$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{¦Ð}{4}£©$£¬¿ÉÒÔ»¯Îª${¦Ñ^2}=2\sqrt{2}¦Ñcos£¨¦È+\frac{¦Ð}{4}£©$£¬¦Ñ2=2¦Ñcos¦È-2¦Ñsin¦È£¬
Òò´Ë£¬ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-2x+2y=0¡­£¨4·Ö£©
Ëü±íʾÒÔ£¨1£¬-1£©ÎªÔ²ÐÄ¡¢$\sqrt{2}$Ϊ°ë¾¶µÄÔ²£®¡¡         ¡­£¨5·Ö£©
£¨2£©µ±$¦Á=\frac{¦Ð}{4}$ʱ£¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨Îª²ÎÊý£©
µãP£¨1£¬0£©ÔÚÖ±ÏßÉÏ£¬ÇÒÔÚÔ²CÄÚ£¬°Ñ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$
´úÈëx2+y2-2x+2y=0ÖеÃ${t^2}+\sqrt{2}t-1=0$¡­£¨6·Ö£©
ÉèÁ½¸öʵÊý¸ùΪt1£¬t2£¬ÔòA£¬BÁ½µãËù¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬
Ôò${t_1}+{t_2}=-\sqrt{2}$£¬t1t2=-1¡­£¨8·Ö£©¡à$|PA|+|PB|=|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\sqrt{6}$¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®½«º¯Êýf£¨x£©=sin3x+cos3xµÄͼÏóÑØxÖáÏò×óÆ½ÒÆ∅¸öµ¥Î»ºó£¬µÃµ½Ò»¸öżº¯ÊýµÄͼÏó£¬Ôò∅µÄÒ»¸ö¿ÉÄÜȡֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{12}$B£®$-\frac{¦Ð}{12}$C£®$\frac{¦Ð}{4}$D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=ax2-x-lnx£¬a¡ÊR£®
£¨1£©µ±$a=\frac{3}{8}$ʱ£¬Çóº¯Êýf£¨x£©µÄ×îСֵ£»
£¨2£©Èô-1¡Üa¡Ü0£¬Ö¤Ã÷£ºº¯Êýf£¨x£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£»
£¨3£©Èôº¯Êýf£¨x£©ÓÐÁ½¸öÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=|x|+|x+1|£®
£¨1£©½â¹ØÓÚxµÄ²»µÈʽf£¨x£©£¾3£»
£¨2£©Èô?x¡ÊR£¬Ê¹µÃm2+3m+2f£¨x£©¡Ý0³ÉÁ¢£¬ÊÔÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨ÕýÊÓͼµÄ»¡ÏßÊǰëÔ²£©£¬¸ù¾ÝͼÖбê³öµÄÊý¾Ý£¬Õâ¸ö¼¸ºÎÌåµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®36¦Ð+288B£®36¦Ð+216C£®33¦Ð+288D£®33¦Ð+216

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼºó£¬Êä³öµÄֵΪ4£¬ÔòpµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{4}£¼p¡Ü\frac{7}{8}$B£®$p£¾\frac{5}{16}$C£®$\frac{7}{8}¡Üp£¼\frac{5}{16}$D£®$\frac{7}{8}£¼p¡Ü\frac{5}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Æ½ÃæÉ϶¯µãPµ½µãF£¨0£¬1£©µÄ¾àÀë±ÈËüµ½Ö±Ïßl£ºy=-2µÄ¾àÀëС1£®
£¨¢ñ£© Ç󶯵ãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©¹ýµãF×÷Ö±ÏßÓëÇúÏßC½»ÓÚÁ½µãA£¬B£¬ÓëÖ±Ïßl½»ÓÚµãM£¬Çó|MA|•|MB|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬Ö±ÈýÀâÖùABC-A1B1C1ÖУ¬AC¡ÍAB£¬AB=2AA£¬MÊÇABµÄÖе㣬¡÷A1MC1ÊǵÈÑüÈý½ÇÐΣ¬DΪCC1µÄÖе㣬EΪBCÉÏÒ»µã£®
£¨1£©ÈôBE=3EC£¬ÇóÖ¤£ºDE¡ÎÆ½ÃæA1MC1£»
£¨2£©ÈôAA1=l£¬ÇóÈýÀâ×¶A-MA1C1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êý$f£¨x£©=-aln£¨x+1£©+\frac{a+1}{x+1}-a-1$£¨a¡ÊR£©
£¨1£©ÌÖÂÛf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£»
£¨2£©Èô¶ÔÈÎÒâµÄÕýÕûÊýn¶¼ÓÐ${£¨1+\frac{1}{n}£©^{n-a}}£¾e$³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸