精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,底面是菱形,

(Ⅰ)求证:直线平面

(Ⅱ)求直线与平面所成角的正切值;

(Ⅲ)设点在线段上,且二面角的余弦值为,求点到底面的距离.

【答案】()证明见解析;()().

【解析】

()由题意利用线面垂直的判定定理即可证得题中的结论;

()建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后求解线面角的正切值即可;

(),由题意结合空间直角坐标系求得的值即可确定点到底面的距离.

()由菱形的性质可知

由线面垂直的定义可知:,且

由线面垂直的判定定理可得:直线平面

()以点A为坐标原点,AD,AP方向为y,z轴正方向,如图所示,在平面ABCD内与AD垂直的方向为x轴正方向建立如图所示的空间直角坐标系

则:

则直线PB的方向向量,很明显平面的法向量为

设直线与平面所成角为

.

(),且

由于

故:,据此可得:

即点M的坐标为

设平面CMB的法向量为:,则:

据此可得平面CMB的一个法向量为:

设平面MBA的法向量为:,则:

据此可得平面MBA的一个法向量为:

二面角的余弦值为,故:

整理得

解得:.

由点M的坐标易知点到底面的距离为或者.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的半焦距为左焦点为,右顶点为,抛物线与椭圆交于两点,若四边形是菱形,则椭圆的离心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面,以为邻边作平行四边形,连接.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.

(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;

(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;

(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围;

2)设函数,且),求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).

(1)求利润函数的函数关系式,并写出定义域;

(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数).

1)若的定义域是,求的值;

2)若是奇函数,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

同步练习册答案