【题目】如图,在四棱锥中,平面,底面是菱形,,.
(Ⅰ)求证:直线平面;
(Ⅱ)求直线与平面所成角的正切值;
(Ⅲ)设点在线段上,且二面角的余弦值为,求点到底面的距离.
【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).
【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;
(Ⅱ)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后求解线面角的正切值即可;
(Ⅲ)设,由题意结合空间直角坐标系求得的值即可确定点到底面的距离.
(Ⅰ)由菱形的性质可知,
由线面垂直的定义可知:,且,
由线面垂直的判定定理可得:直线平面;
(Ⅱ)以点A为坐标原点,AD,AP方向为y轴,z轴正方向,如图所示,在平面ABCD内与AD垂直的方向为x轴正方向建立如图所示的空间直角坐标系,
则:,
则直线PB的方向向量,很明显平面的法向量为,
设直线与平面所成角为,
则,.
(Ⅲ)设,且,
由于,
故:,据此可得:,
即点M的坐标为,
设平面CMB的法向量为:,则:
,
据此可得平面CMB的一个法向量为:,
设平面MBA的法向量为:,则:
,
据此可得平面MBA的一个法向量为:,
二面角的余弦值为,故:,
整理得 ,
解得:.
由点M的坐标易知点到底面的距离为或者.
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,平面,,,,以,为邻边作平行四边形,连接和.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.
(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;
(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).
(1)求利润函数的函数关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com