精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+1,a,b为实数,a≠0,x∈R,F(x)=
f(x),x>0
-f(x),x<0

(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-1,1]时,g(x)=f(x)+kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且函数f(x)为偶函数,判断F(m)+F(n)是否大于0.
分析:(1)把x=-1代入解析式列出一个方程,再由函数的值域和二次函数的性质得△=0得一个方程,联立方程求解;
(2)由(1)和条件求出g(x)的解析式,再求出对称轴,根据题意和和二次函数的单调性,列出不等式求解;
(3)由二次函数是偶函数的条件得b=0,代入F(x),再由条件判断出n<0<m,表示出F(m)+F(n)化简后判断符号.
解答:解:(1)依题意,有
a-b+1=0
△=b2-4a=0

解得
a=1
b=2
,∴f(x)=x2+2x+1,
F(x)=
x2+2x+1,(x>0)
-x2-2x-1,(x<0).

(2)由(1)得g(x)=f(x)+kx=x2+2x+1+kx=x2+(k+2)x+1,
∴函数g(x)的对称轴x=-
k+2
2

∵g(x)在区间[-1,1]上是单调函数,
-
k+2
2
≤-1,或-
k+2
2
≥1

解得    k≥0,或k≤-4.
∴实数k的取值范围为(-∞,-4]∪[0,+∞),
(3)∵f(x)=ax2+bx+1为偶函数,∴b=0,即f(x)=ax2+1(a>0),
F(x)=
ax2+1,(x>0)
-ax2-1,(x<0).

∵mn<0,m+n>0,a>0,不妨设n<0<m,则有0<-n<m,
∴m-n>0,m+n>0.
∵F(m)+F(n)=am2+1-an2-1=a(m+n)(m-n),
∴F(m)+F(n)>0.
点评:本题考查了求二次函数解析式,二次函数的单调性和奇偶性的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案