精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x+m
2x+1
为奇函数,m∈R.
(1)求m的值;
(2)利用定义判断并证明函数f(x)的单调性,并求出f(x)在[-1,1]上的最大值.
考点:函数最值的应用,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)由函数f(x)=
2x+m
2x+1
为奇函数,则f(0)=0,可得m的值;
(2)f(x)=1-
2
2x+1
,任取x1、x2∈R,设x1<x2,通过作差证明f(x1)<f(x2)即可判断函数的单调性,进而得到f(x)在[-1,1]上的最大值;
解答: 解:(1)∵f(x)为奇函数.
∴f(0)=
1+m
2
=0,
解得m=-1,
当m=-1时,f(x)=
2x-1
2x+1

f(-x)=
2-x-1
2-x+1
=
1-2x
2x+1
=-
2x-1
2x+1
=-f(x),
满足奇函数的定义.
故m=-1;
(2)f(x)=1-
2
2x+1

任取x1、x2∈R,设x1<x2
∵f(x1)-f(x2)=(1-
2
2x1+1
)-(1-
2
2x2+1
)=2(
2
2x2+1
-
2
2x1+1
)=
2(2x1-2x2)
(2x1+1)(2x2+1)

∵x1<x2
2x1+1>02x2+1>02x1-2x2<0
∴f(x1)-f(x2)<0,
∴f(x1)<f(x2).
∴f(x)在其定义域R上是增函数.
由f(1)=
2-1
2+1
=
1
3

故f(x)在[-1,1]上的最大值为
1
3
点评:本题考查函数的奇偶性、单调性的判断,属基础题,定义是解决该类题目的基本方法,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A含有两个元素0和1,则(  )
A、1∉AB、0∈A
C、0∉AD、2∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=
π
4
是f(x)=asinx+bcosx的一条对称轴,且最大值为2
2
,则函数g(x)=asinx+b(  )
A、最大值是4,最小值是0
B、最大值是2,最小值是-2
C、最大值可能是0
D、最小值不可能是-4

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四组函数中,表示同一函数的是(  )
A、f(x)=
x+1
x-1
,g(x)=x2-1
B、f(x)=
x2-1
x-1
,g(x)=x+1
C、f(x)=
x2
,g(x)=(
x
2
D、f(x)=|x|,g(t)=
t2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,侧面PAD⊥底面ABCD,ABCD是直角梯形,△PAD为正三角形,DA⊥AB,CB⊥AB,AB=AD=1,BC=2,E为BC的中点,M为侧棱PB上一点.
(Ⅰ)求二面角P-BD-A的余弦值;
(Ⅱ)是否存在点M使平面MAE⊥平面PBD?若存在,求出
PM
MB
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
an+3
(n∈N*).
(Ⅰ)若数列{bn}满足bn=
1
an
+
1
2
,求证:{bn}为等比数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)数列{cn}满足cn=(3n-1)
n
2n
•an,数列{cn}的前n项和为Tn.是否存在正实数λ,使得不等式λ<Tn+
n
2n-1
对一切n∈N*恒成立,若存在,求λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的对称轴为坐标轴,短轴的一个端点与两焦点是同一个正三角形的顶点,焦点与椭圆上的点的最短距离为
3
,求这个椭圆的方程和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).
(1)若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取12人参加一项活动,求图中的a值及从身高在[140,150]内的学生中选取的人数m.
(2)在(1)的条件下,从身高在[130,150]内的学生中等可能地任选两名,求至少有一名身高在[140,150]内的学生被选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0)的图象的一条对称轴是直线x=
π
8

(1)求φ的值并写出f(x)的解析式;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

同步练习册答案