精英家教网 > 高中数学 > 题目详情
2.函数$y=3sin(\frac{π}{4}-3x)$的最小正周期为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.8D.4

分析 利用诱导公式以及y=Asin(ωx+φ)的周期等于$\frac{2π}{ω}$ω,得出结论.

解答 解:函数$y=3sin(\frac{π}{4}-3x)$=-3sin(3x-$\frac{π}{4}$)的最小正周期为$\frac{2π}{3}$,
故选:A.

点评 本题主要考查诱导公式、三角函数的周期性及其求法,利用了y=Asin(ωx+φ)的周期等于$\frac{2π}{ω}$ω,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.圆x2+y2+2x-4y+1=0关于直线ax+y+1=0对称,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:(1)${(\frac{3}{2})^{-2}}-{(-4.5)^0}-{(\frac{8}{27})^{\frac{2}{3}}}$;
(2)$\frac{2}{3}$lg8+lg25-${3^{2{{log}_3}5}}$+${16^{\frac{3}{4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=${({\frac{1}{4}})^x}-{({\frac{1}{2}})^x}$+1在[-3,2]的最大值是57.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf(x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求$\frac{a}{b}$的取值范围;
(3)利用“基函数f(x)=log4(4x+1),g(x)=x-1)”生成一个函数h(x),使得h(x)满足:
①是偶函数,②有最小值1,求h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设A={4,5,6,8},B={3,5,7,8},则A∪B=(  )
A.A∪B={5,8}B.A∪B={3,4,5,6,7,8}C.A∪B={4,6}D.A∪B={4,5,8}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}中,a3+a5=10,{an}的前n项和为Sn,S5=15.
(1)求数列{an}的通项公式an
(2)设${b_n}={({\frac{1}{2}})^n}•{a_n}$,求数列{bn}的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a=2,集合M={x∈R|x≤3},则(  )
A.a⊆MB.a∈MC.{a}∈MD.{a|a=2}∈M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的大小为120°.

查看答案和解析>>

同步练习册答案