精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)的准线与x轴交于点M(-1,0).
(Ⅰ)求抛物线的方程,并写出焦点坐标;
(Ⅱ)是否存在过焦点的直线AB(直线与抛物线交于点A,B),使得三角形MAB的面积S△MAB=4
2
?若存在,请求出直线AB的方程;若不存在,请说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由已知条件得-
p
2
=-1
,由此能求出抛物线方程和抛物线焦点坐标.
(Ⅱ)法一:由题意,设AB:x=ty+1,并与y2=4x联立,得到方程:y2-4ty-4=0,设A(x1,y1),B(x2,y2),由S△MAB=S△MAF+S△MBS=
1
2
|MF|•(|y1|+|y2|),能求出直线AB的方程.
(Ⅱ)法二:设AB:y=k(x-1)(k≠0),并与y2=4x联立,得到方程:k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),|AB|=
4(k2+1)
k2
,点M到直线AB的距离为的d,由S△MAB=
1
2
|AB|•d,能求出直线AB的方程.
解答: (Ⅰ)解:∵抛物线y2=2px(p>0)的准线与x轴交于点M(-1,0),
-
p
2
=-1

解得p=2,
∴抛物线方程为y2=4x,
抛物线焦点坐标为F(1,0).…(4分)
(Ⅱ)解法一:由题意,设AB:x=ty+1,并与y2=4x联立,
得到方程:y2-4ty-4=0,…(6分)
设A(x1,y1),B(x2,y2),则y1+y2=4t,y1•y2=-4.…(7分)
S△MAB=S△MAF+S△MBS
=
1
2
|MF|•(|y1|+|y2|),
∵y1•y2<0,∴|y1|+|y2|=|y1-y2|=
(y1+y2)2-4y1y2
=4
t2+1
,…(9分)
又|MF|=2,∴S△MAB=
1
2
×2×4
t2+1
=4
2
,…(10分)
解得t=±1,…(11分)
故直线AB的方程为:x=±y+1.
即x+y-1=0或x-y-1=0.…(12分)
(Ⅱ)解法二:当AB⊥x轴时,|AB|=2p=4,
S△MAB=
1
2
|MF|•|AB|=
1
2
×2×4
=4,不符合题意.…(5分)
∴设AB:y=k(x-1)(k≠0),并与y2=4x联立,
得到方程:k2x2-(2k2+4)x+k2=0,…(6分)
设A(x1,y1),B(x2,y2),则x1+x2=
2k2+4
k2
,x1x2=1.…7分
|AB|=x1+x2+p=
4(k2+1)
k2

点M到直线AB的距离为d=
|k×(-1)-0-k|
k2+1
=
2|k|
k2+1
,…(9分)
S△MAB=
1
2
|AB|•d
=
1
2
×
4(k2+1)
k2
×
2|k|
k2+1

=
4
k2+1
|k|
=4
2
,…(10分)
解得k=±1,…(11分)
故直线AB的方程为:y=±(x-1).即x+y-1=0或x-y-1=0.…(12分)
点评:本题考查抛物线的方程和焦点坐标的求法,考查直线方程的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b满足|a-2|=
3b+6
+
7-b
,则不等式2|1-a|-1>a(a-2)成立的概率为(  )
A、
1
4
B、
1
3
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z1,z2为复数,i为虚数单位,z1
.
z1
+3(z1+
.
z1
)+5=0,
z2+3
z2-3
为纯虚数,z1,z2在复平面内对应的点分别为P,Q.
(1)求点P的轨迹方程;
(2)求点Q的轨迹方程;
(3)写出线段PQ长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2ωx+
π
6
)+2sin2ωx(ω>0),其图象的两个相邻对称中心的距离为
π
2

(1)求函数f(x)的解析式;
(2)若△ABC的内角为A,B,C,所对的边分别为a,b,c(其中b<c),且f(A)=2,a=
7
,△ABC面积为
3
2
3
,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,公差d<0,满足S12>0,S13<0,求Sn达到最大值时对应的项数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P为圆C1:x2+y2=2上的动点,过点P作x轴的垂线,垂足为Q.动点M满足
2
MQ
=
PQ
(其中P,Q不重合).
(Ⅰ)求点M的轨迹C2的方程;
(Ⅱ)过直线x=-2上的动点T作圆C1的两条切线,设切点分别为A,B.若直线AB与(Ⅰ)中的曲线C2交于C,D两点,求
|AB|
|CD|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,求不同取法的种数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如表所示:
积极参加班级工作  不太积极参加班级工作 合计
学习积极性高       18        7  25
学习积极性一般        6        19  25
合计       24        26  50
试运用独立性检验的思想方法分析:学生的学习积极性与对待班级的态度是否有关系?说明理由.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
   k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥的底面半径是1,它的侧面展开图是一个半圆,则它的母线长为
 

查看答案和解析>>

同步练习册答案