【题目】低碳经济时代,文化和旅游两大产业逐渐成为我国优先发展的“绿色朝阳产业”.为了解某市的旅游业发展情况,某研究机构对该市2019年游客的消费情况进行随机调查,得到频数分布表及频率分布直方图.
旅游消费(千元) | ||||
频数(人) | 10 | 60 |
(1)由图表中数据,求的值及游客人均消费估计值(同一组中的数据以这组数据所在区间中点的值为代表)
(2)该机构利用最小二乘法得到2013~2017年该市的年旅游人次(千万人次)与年份代码的线性回归模型:.
注:年份代码1~5分别对应年份2013~2017
①试求2013~2017年的年旅游人次的平均值;
②据统计,2018年该市的年旅游人次为9千万人次.建立2013~2018年该市年旅游人次(千万人次)与年份代码的线性回归方程,并估计2019年该市的年旅游收入.
注:年旅游收入=年旅游人次×人均消费
参考数据:.参考公式:,.
科目:高中数学 来源: 题型:
【题目】在统计调查中,问卷的设计是一门很大的学问,特别是对一些敏感性问题.例如学生在考试中有无作弊现象,社会上的偷税漏税等,更要精心设计问卷.设法消除被调查者的顾虑,使他们能够如实回答问题,否则被调查者往往会拒绝回答,或不提供真实情况.为了调查中学生中的早恋现象,随机抽出200名学生,调查中使用了两个问题.①你的血型是A型或B型(资料:我国人口型血比例41%,型血比例28%,型血比例24%.型血比例7% ).②你是否有早恋现象,让被调查者掷两枚骰子,点数之和为奇数的学生如实回答第一个问题.点数之和为偶数的学生如实回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不放,后来在盒子中收到了57个小石子.
(1)试计算掷两枚骰子点数之和为偶数的机率;
(2)你能否估算出中学生早恋人数的百分比?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市工会组织了一次工人综合技能比赛,一共有名工人参加,他们的成绩都分布在内,数据经过汇总整理得到如下的频率分布直方图,规定成绩在分及分以上的为优秀.
(1)求图中的值;
(2)估计这次比赛成绩的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(3)某工厂车间有名工人参加这次比赛,他们的成绩分布和整体的成绩分布情况完全一致,若从该车间参赛的且成绩为优秀的工人中任选两人,求这两人成绩均低于分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,右焦点F到右准线的距离为3.
(1)求椭圆C的标准方程;
(2)设过F的直线l与椭圆C相交于P,Q两点.已知l被圆O:x2+y2=a2截得的弦长为,求△OPQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程,并说明它是何种曲线;
(2)设点的坐标为,直线交曲线于、两点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,为正三角形,且侧面PAB⊥底面ABCD, 为线段的中点, 在线段上.
(I)当是线段的中点时,求证:PB // 平面ACM;
(II)求证: ;
(III)是否存在点,使二面角的大小为60°,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的方程为(),,分别为椭圆的左右焦点,A,B为椭圆E上关于原点对称两点,点M为椭圆E上异于A,B一点,直线和直线的斜率和满足:.
(1)求椭圆E的标准方程;
(2)过作直线l交椭圆于C,D两点,且(),求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com