【题目】已知椭圆E的方程为
(
),
,
分别为椭圆的左右焦点,A,B为椭圆E上关于原点对称两点,点M为椭圆E上异于A,B一点,直线
和直线
的斜率
和
满足:
.
(1)求椭圆E的标准方程;
(2)过
作直线l交椭圆于C,D两点,且
(
),求
面积的取值范围.
科目:高中数学 来源: 题型:
【题目】低碳经济时代,文化和旅游两大产业逐渐成为我国优先发展的“绿色朝阳产业”.为了解某市的旅游业发展情况,某研究机构对该市2019年游客的消费情况进行随机调查,得到频数分布表及频率分布直方图.
旅游消费(千元) |
|
|
|
|
频数(人) | 10 | 60 |
|
|
![]()
(1)由图表中数据,求
的值及游客人均消费估计值(同一组中的数据以这组数据所在区间中点的值为代表)
(2)该机构利用最小二乘法得到2013~2017年该市的年旅游人次
(千万人次)与年份代码
的线性回归模型:
.
注:年份代码1~5分别对应年份2013~2017
①试求2013~2017年的年旅游人次的平均值;
②据统计,2018年该市的年旅游人次为9千万人次.建立2013~2018年该市年旅游人次
(千万人次)与年份代码
的线性回归方程,并估计2019年该市的年旅游收入.
注:年旅游收入=年旅游人次×人均消费
参考数据:
.参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
极坐标系的极点为直角坐标系
的原点,极轴为
轴的正半轴,两种坐标系中的长度单位相同,已知曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)直线
(
为参数)与曲线
交于
两点,与
轴交于
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,倾斜角为
的直线
的参数方程为
(其中
为参数).在以
为极点、
轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,曲线
:
的焦点
的极坐标为
.
(1)求常数
的值;
(2)设
与
交于
、
两点,且
,求
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的极坐标方程;
(2)将曲线
上所有点的横坐标不变,纵坐标缩短到原来的
倍,得到曲线
,若
与
的交点为
(异于坐标原点
),
与
的交点为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的参数方程为
,(t为参数),在以原点为极点,x轴正半轴为极轴的极坐标中,曲线
的极坐标方程为
.
(1)将
与
的方程化为极坐标方程;
(2)若曲线
与
的公共点都在
上,
,求r.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)过点(1,
),过椭圆C的一个焦点作与长轴垂直的直线,被椭圆C截得的弦长为1
(1)求椭圆C的标准方程
(2)已知点P为椭圆C上不同于顶点的一点,A,B为椭圆C的左,右顶点,直线AP,BP分别与直线x=﹣6交于M,N两点设线段MN中点为Q,求
的取最小值时点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com