精英家教网 > 高中数学 > 题目详情

【题目】已知在平面直角坐标系中,直线为参数),以原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程及曲线的直角坐标方程;

(2)设点直角坐标为,直线与曲线交于两点,求的值.

【答案】(1)直线的普通方程为,曲线的直角坐标方程为;(2)3.

【解析】

(1)由参数方程消去参数即可得到普通方程,由极坐标方程与直角坐标方程的互化即可得出直角坐标方程;

(2)先将直线的参数方程化为为参数),代入曲线C的方程,根据参数的几何意义即可求出结果.

解:(1)直线的普通方程为.

因为

所以

所以.

故曲线的直角坐标方程为.

(2)据题设分析知,直线的参数方程为为参数).

代直线的参数方程入曲线的方程并化简,得.

由参数的几何意义知,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北. 湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验.在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

50

个体经营户

50

150

合计

1)写出选择 5 个国家综合试点地区采用的抽样方法;

2)补全上述列联表(在答题卡填写),并根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;

3)根据该试点普查小区的情况,为保障第四次经济普查的顺利进行,请你从统计的角度提出一条建议.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知椭圆的左、右顶点分别为A,B,其离心率,点为椭圆上的一个动点,面积的最大值是

(1)求椭圆的方程;

(2)若过椭圆右顶点的直线与椭圆的另一个交点为,线段的垂直平分线与轴交于点,当时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点与点的距离和它到直线的距离相等,记点的轨迹为曲线

1)求曲线的方程

2)设点,动点在曲线上运动时,的最短距离为,求的值以及取到最小值时点的坐标

3)设为曲线的任意两点,满足为原点),试问直线是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

1)求椭圆的方程;

2)过作斜率分别为的两条直线,分别交椭圆于点,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三角形ABC中,D是垂足,则推广到空间,三棱锥中,O为垂足,且O在三角形BCD内,则类似的结论为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于曲线C所在平面上的定点,若存在以点为顶点的角,使得对于曲线C上的任意两个不同的点AB恒成立,则称角为曲线C相对于点界角,并称其中最小的界角为曲线C相对于点确界角.曲线相对于坐标原点确界角的大小是 _________.

查看答案和解析>>

同步练习册答案