【题目】动点
与点
的距离和它到直线
的距离相等,记点
的轨迹为曲线![]()
(1)求曲线
的方程
(2)设点
,动点
在曲线
上运动时,
的最短距离为
,求
的值以及取到最小值时点
的坐标
(3)设
为曲线
的任意两点,满足
(
为原点),试问直线
是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由
【答案】(1)
;(2)
;
;(3)恒过定点
,理由见解析
【解析】
(1)由抛物线定义可知轨迹为抛物线,结合焦点坐标求得曲线方程;
(2)设
,由两点间距离公式可得到
,结合二次函数的性质可知当
时,
取得最小值,从而构造方程求得
;利用
求得
,从而得到
点坐标;
(3)将直线
方程与抛物线方程联立可得
坐标;由两点连线斜率公式求得直线
斜率,进而得到直线
的方程,整理可得恒过的定点坐标.
(1)由抛物线定义可知,动点
的轨迹是以
为焦点,
为准线的抛物线
曲线
的方程为:![]()
(2)设
![]()
![]()
当
时,
,解得:![]()
此时
![]()
(3)由题意知,直线
斜率均存在且均不为零,可记为![]()
,与抛物线方程联立得:
![]()
同理可得:
直线
斜率为![]()
直线
方程为:![]()
整理可得:
当
,
时等式恒成立
直线
恒过点![]()
科目:高中数学 来源: 题型:
【题目】(题文)(题文)已知椭圆
的左右顶点分别为
,
,右焦点
的坐标为
,点
坐标为
,且直线
轴,过点
作直线与椭圆
交于
,
两点(
,
在第一象限且点
在点
的上方),直线
与
交于点
,连接
.
(1)求椭圆
的方程;
(2)设直线
的斜率为
,直线
的斜率为
,问:
的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,已知
,M是BC的中点.
(1)若
,求向量
与向量
的夹角的余弦值;
(2)若O是线段AM上任意一点,且
,求
的最小值;
(3)若点P是边BC上的一点,且
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程(本题满分10分)
在平面直角坐标系中,将曲线
向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的
,得到曲线
,以坐标原点
为极点,
轴的正半轴为极轴,建立极坐标系,
的极坐标方程为
.
(1)求曲线
的参数方程;
(2)已知点
在第一象限,四边形
是曲线
的内接矩形,求内接矩形
周长的最大值,并求周长最大时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,直线
(
为参数),以原点为极点,
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程及曲线
的直角坐标方程;
(2)设点
直角坐标为
,直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左.右焦点分别为
,短轴两个端点为
,且四边形
的边长为
的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若
,分别是椭圆长轴的左,右端点,动点
满足
,连结
,交椭圆于点
.证明:
的定值;
(Ⅲ)在(Ⅱ)的条件下,试问
轴上是否存在异于点
,的定点
,使得以
为直径的圆恒过直线
,
的交点,若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(kx+
)ex﹣2x,若f(x)<0的解集中有且只有一个正整数,则实数k的取值范围为 ( )
A. [
,
)B. (
,
]
C. [
)D. [
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为1,线段
上有两个动点
,且
,现有如下四个结论:
;
平面
;
三棱锥
的体积为定值;
异面直线
所成的角为定值,
其中正确结论的序号是______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com