精英家教网 > 高中数学 > 题目详情
10.设全集U=R,$A=\left\{{x|\frac{x-3}{x-1}>0}\right\}$,B={x|x<2},则(∁UA)∩B=(  )
A.{x|1≤x<2}B.{x|1<x<2}C.{x|x<2}D.{x|x≥1}

分析 求出A中不等式的解集确定出A,找出A补集与B的交集即可.

解答 解:由A中不等式解得:x<1或x>3,即A={x|x<1或x>3},
∴∁UA={x|1≤x≤3},
∵B={x|x<2},
∴(∁UA)∩B={x|1≤x<2},
故选:A.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.计算3tan10°+4$\sqrt{3}sin{10°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线y=b与函数f(x)=2x+3和g(x)=ax+lnx分别交于A,B两点,若|AB|的最小值为2,则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线l与抛物线C:y2=2x交于A,B两点,O为坐标原点,若直线OA,OB的斜率k1,k2满足k1k2=$\frac{2}{3}$,则直线l过定点(-3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,乙运动员的发挥更稳定.(填“甲”或“乙”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=\frac{{\sqrt{3}+tanx}}{{1-\sqrt{3}tanx}}$(  )
A.定义域是$\{x|x≠kπ+\frac{π}{6},(k∈Z)\}$B.值域是R
C.在其定义域上是增函数D.最小正周期是π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),圆F:(x-c)2+y2=c2,直线l与双曲线C的一条渐近线垂直且在x轴上的截距为$\frac{2}{3}$a.若圆F被直线l所截得的弦长为$\frac{4\sqrt{2}}{3}$c,则双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个正方体的表面积与一个球体的表面积相等,那么它们的体积比是(  )
A.$\frac{\sqrt{6π}}{6}$B.$\frac{\sqrt{π}}{2}$C.$\frac{\sqrt{2π}}{2}$D.$\frac{3\sqrt{π}}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.sin20°sin80°-cos160°sin10°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案