【答案】
分析:(1)由∵f(0)=0可得c=0而函数对于任意x∈R都有

,可得函数f(x)的对称轴从而可得a=b
结合f(x)≥x,即ax
2+(b-1)x≥0对于任意x∈R都成立,可转化为二次函数的图象可得a>0,且△=(b-1)
2≤0.
(2)由(1)可得g(x)=f(x)-|λx-1|=

根据函数g(x)需讨论:
①当

时,函数g(x)=x
2+(1-λ)x+1的对称轴为

,
则要比较对称轴与区间端点的大小,为此产生讨论:

,与

分别求单调区间
②当

时,函数g(x)=x
2+(1+λ)x-1的对称轴为

,
同①的讨论思路
(3)结合(2)中的单调区间及零点存在定理进行判断函数g(x)的零点
解答:(1)解:∵f(0)=0,∴c=0.(1分)
∵对于任意x∈R都有

,
∴函数f(x)的对称轴为

,即

,得a=b.(2分)
又f(x)≥x,即ax
2+(b-1)x≥0对于任意x∈R都成立,
∴a>0,且△=(b-1)
2≤0.
∵(b-1)
2≥0,∴b=1,a=1.
∴f(x)=x
2+x.(4分)
(2)解:g(x)=f(x)-|λx-1|=

(5分)
①当

时,函数g(x)=x
2+(1-λ)x+1的对称轴为

,
若

,即0<λ≤2,函数g(x)在

上单调递增;(6分)
若

,即λ>2,函数g(x)在

上单调递增,在

上单调递减.
(7分)
②当

时,函数g(x)=x
2+(1+λ)x-1的对称轴为

,
则函数g(x)在

上单调递增,在

上单调递减.(8分)
综上所述,当0<λ≤2时,函数g(x)单调递增区间为

,单调递减区间为

;(9分)
当λ>2时,函数g(x)单调递增区间为

和

,单调递减区间为

和

.(10分)
(3)解:①当0<λ≤2时,由(2)知函数g(x)在区间(0,1)上单调递增,
又g(0)=-1<0,g(1)=2-|λ-1|>0,
故函数g(x)在区间(0,1)上只有一个零点.(11分)
②当λ>2时,则

,而g(0)=-1<0,

,g(1)=2-|λ-1|,
(ⅰ)若2<λ≤3,由于

,
且

=

,
此时,函数g(x)在区间(0,1)上只有一个零点;(12分)
(ⅱ)若λ>3,由于

且g(1)=2-|λ-1|<0,此时,函数g(x)在区间(0,1)
上有两个不同的零点.(13分)
综上所述,当0<λ≤3时,函数g(x)在区间(0,1)上只有一个零点;
当λ>3时,函数g(x)在区间(0,1)上有两个不同的零点.(14分)
点评:本题主要考查了函数的解析式的求解,函数的单调区间,零点存在的判定定理,考查了分类讨论思想的在解题中的应用.属于综合性较强的试题.