精英家教网 > 高中数学 > 题目详情
已知四面体A-BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.
考点:直线与平面所成的角
专题:空间位置关系与距离
分析:作DE⊥BC,交BC于E,作AO⊥平在BDC,交DE于O,作QP⊥平面BDC,交DE于P,连结QC,CP,则∠PCQ是CQ与平面DBC所成角,由此能求出CQ与平面DBC所成角的正弦值.
解答: 解:作DE⊥BC,交BC于E,作AO⊥平在BDC,交DE于O,
作PQ⊥平面BDC,交DE于P,连结QC,CP,
则∠PCQ是CQ与平面DBC所成角,
设正四面体ABCD的棱长为2,
则DE=QC=DE=
22-12
=
3

DO=
2
3
DE=
2
3
3
,DP=
3
3

AO=
4-
4
3
=
2
6
3
,PQ=
1
2
AO=
6
3

∴sin∠PCQ=
PQ
QC
=
6
3
3
=
2
3

∴CQ与平面DBC所成角的正弦值为
2
3
点评:本题考查直线与平面所成角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα=
7
25
,且α的终边在第二象限,则tanα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前项n和sn=n2+4n(n∈N*),数列{bn}为等比数列,首项b1=2,公比为q(q>0),且满足b2,b3+4q,b4成等差数列.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
3(an-3)•bn
4
,记数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

一质点P从单位圆O上的点(1,0)出发,以角速度每秒为
π
200
弧度逆时针旋转,且与原点O的距离y与时间(单位:秒)的函数关系为y=0.01t+1.
(1)当t=50秒时,求质点P的位置P1的坐标;
(2)当t=32.5分钟时,质点P在位置P2,求S △op1p2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

比较大小:(
8
7
 -
7
6
 
9
8
 -
7
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知B是x2+y2=1(y∈[0,1])上一动点,A(2,0)△ABC是以A为直角顶点的等腰三角形,且A,B,C按顺时针方向排列,则动点C的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-EFGH的棱长为a,点P在AC上,点Q在BG上,AP=BQ=a,求证:PQ⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

由1、2、3、4、5、6、7、9组成的没有重复数字且1、3都不与5相邻的八位数的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[1-2a,2-a]上的偶函数f(x),当x≥0时,f(x)=x+ex,若f(t)<f(2t-1).则t的取值范围是(  )
A、[-1,1]
B、[0,1]
C、[
1
2
,1]
D、[0,
1
3

查看答案和解析>>

同步练习册答案