精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求证:BE∥平面PAD;
(2)求证:BC⊥平面PBD;
(3)已知在侧棱PC上存在一点Q,使得二面角Q-BD-P为45°,求
PQ
PC
考点:用空间向量求平面间的夹角,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)根据线面平行的判定定理即可证明BE∥平面PAD;
(2)根据线面垂直的判定定理即可证明BC⊥平面PBD;
(3)建立空间直角坐标系,求出向量的法向量,根据向量法与二面角之间的关系,即可求出
PQ
PC
解答: 解:(1)取PD的中点F,连结EF,AF,
因为E为PC中点,所以EF∥CD,
EF=
1
2
CD=1
,在梯形ABCD中,AB∥CD,AB=1,
所以EF∥AB,EF=AB,四边形ABEF为平行四边形,所以BE∥AF,
BE?平面PAD,AF?平面PAD,
所以BE∥平面PAD.
(2)平面PCD⊥底面ABCD,PD⊥CD,所以PD⊥平面ABCD,
所以PD⊥AD.如图,以D为原点建立空间直角坐标系D-xyz.
则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1),
DB
=(1,1,0),
BC
=(-1,1,0)

所以
BC
DB
=0,BC⊥DB

又由PD⊥平面ABCD,可得PD⊥BC,
所以BC⊥平面PBD.
(3)平面PBD的法向量为
BC
=(-1,1,0)
PC
=(0,2,-1),
PQ
PC
,λ∈(0,1)

所以
PQ
=(0,2λ,-λ)

设平面QBD的法向量为
n
=(a,b,c),f′(x)=0,得x1=
-a-
a2+4a
2
x2=
-a+
a2+4a
2

n
DB
=0
n
DQ
=0

所以
a+b=0
2λb+(1-λ)c=0

所以
n
=(-1,1,
λ-1
)
,…(10分)
所以cos45°=
n•
BC
|n||
BC
|
=
2
2
2+(
λ-1
)
2
=
2
2

注意到λ∈(0,1),得λ=
2
-1
.所以
PQ
PC
=
2
-1
点评:本题主要考查空间直线和平面,平行和垂直的判定,以及空间二面角的求解,要求熟练掌握相应的判定定理以及,空间向量与二面角的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求以椭圆
x2
49
+
y2
24
=1,的焦点为顶点,以椭圆的顶点为焦点的双曲线方程,并求它的离心率、渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 保留 不支持
20岁以下 800 450 200
20岁以上(含20岁) 100 150 300
(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持”态度的人中抽取了45人,求n的值;
(Ⅱ)所有参与调查的人中,完成下面列联表,并由表中数据分析,能否认为持“支持”态度与“20岁以下”有关?
(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.
持支持态度 不持支持态度 合计
20岁以下
20岁以上(含20岁)
合计

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足:存在T∈R,T≠0,对定义域内的任意x,f(x+T)=f(x)+f(T)恒成立,则称f(x)
为T函数.现给出下列函数:①y=
1
x
; ②y=ex;③y=lnx;④y=sinx.其中为T函数的序号是
 
.(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BC′D,使得平面BC′D⊥平面ABD.
(Ⅰ)求证:C′D⊥平面ABD;
(Ⅱ)求直线BD与平面BEC′所成角的正弦值;
(Ⅲ)求二面角D-BE-C′的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两校各有2名教师报名支教,其中甲校2男,乙校1男1女.若从甲校和乙校报名的教师中任选2名,则选出的2名教师来自同一学校的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+
π
4
)=
2
4
,则sin2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径为
3
的扇形AOB的圆心角为120°,点C在
AB
上,且∠COB=30°,若
OC
OA
OB
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在山脚A测得山顶P的仰角为α=30°,沿倾斜角β=15°的斜坡向上走100米到B,在B处测得山顶P的仰角为γ=60°,则山高h=
 
(单位:米)

查看答案和解析>>

同步练习册答案