精英家教网 > 高中数学 > 题目详情
15.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.

分析 求出底面中心到边的距离,棱锥的高,然后求解棱锥的体积.

解答 解:设正五棱锥高为h,底面正五边形的角为108°,
底面正五边形中心到边距离为:tan54°,
h=$\frac{12}{tan54°}$,
则此正五棱锥体积为:$\frac{1}{3}$×$5×\frac{1}{2}×2×tan5{4}^{°}×\frac{12}{tan54°}$=20.
故答案为:20.

点评 本题考查正五棱锥轴截面,棱锥体积等基础知识,意在考查基本运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若某四面体的三视图是全等的等腰直角三角形,且其直角边的长为6,则该四面体的体积是(  )
A.108B.72C.36D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的离心率是$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一个焦点与抛物线x2=12y的焦点相同,则此双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{5}}{5}$xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=$±\frac{\sqrt{5}}{2}$xD.y=$±\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{y^2}{12}-\frac{x^2}{4}=1$的焦点到渐近线的距离为(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线l过点P(-3,-$\frac{3}{2}$)且被圆x2+y2=25截得的弦长是8,则直线l的方程为(  )
A.3x+4y+15=0B.x=-3或3x+4y+15=0
C.x=-3或y=-$\frac{3}{2}$D.x=-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3$\frac{1}{3}$寸,容纳米2000斛(1丈=10尺,l尺=10寸,斛为容积单位,l斛≈1.62立方尺,π≈3),则圆柱底圆周长约为(  )
A.l丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{2}=1(a>0)$与抛物线y2=8x的焦点重合,直线y=x+1与该双曲线的交点个数是(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,c=2$\sqrt{3}$,asinA-csinC=(a-b)sinB.
(1)若c+bcosA=a(4cosA+cosB),求△ABC的面积;
(2)求AB边上的中线CD的取值范围.

查看答案和解析>>

同步练习册答案