精英家教网 > 高中数学 > 题目详情
3.已知双曲线$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一个焦点与抛物线x2=12y的焦点相同,则此双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{5}}{5}$xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=$±\frac{\sqrt{5}}{2}$xD.y=$±\sqrt{5}$x

分析 求得抛物线的焦点,由题意可得3=$\sqrt{5+m}$,解方程可得m,可得双曲线的方程,再将其中的“1”换为“0”,进而得到所求渐近线方程.

解答 解:抛物线x2=12y的焦点为(0,3),
由双曲线$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一个焦点与抛物线x2=12y的焦点相同,
可得3=$\sqrt{5+m}$,
解得m=4,
即有双曲线的方程为$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1,
可得渐近线方程为y=±$\frac{\sqrt{5}}{2}$x.
故选:C.

点评 本题考查双曲线的渐近线方程的求法,注意运用抛物线的焦点和双曲线的方程,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=e${\;}^{cos{x}^{2}}$,求dy.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=2px的焦点是双曲线$\frac{x^2}{8}-\frac{y^2}{p}$=1的一个焦点,则双曲线的渐近线方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若双曲线$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1的一个焦点在抛物线y2=2px的准线上,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,半径为2的半圆有一内接梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上.若双曲线以A、B为焦点,且过C、D两点,则当梯形ABCD的周长最大时,双曲线的实轴长为2$\sqrt{3}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若双曲线的方程为4x2-9y2=36,则其实轴长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,求矩阵A的特征值和特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BB1和CC1的中点,AF⊥平面A1DE,其垂足F落在直线A1D上.
(1)求证:BC⊥A1D; 
(2)若A1D=$\sqrt{13}$,AB=BC=3,G为AC的中点,求三棱锥G-A1DB1的体积.

查看答案和解析>>

同步练习册答案