| A. | y=±$\frac{\sqrt{5}}{5}$x | B. | y=±$\frac{2\sqrt{5}}{5}$x | C. | y=$±\frac{\sqrt{5}}{2}$x | D. | y=$±\sqrt{5}$x |
分析 求得抛物线的焦点,由题意可得3=$\sqrt{5+m}$,解方程可得m,可得双曲线的方程,再将其中的“1”换为“0”,进而得到所求渐近线方程.
解答 解:抛物线x2=12y的焦点为(0,3),
由双曲线$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一个焦点与抛物线x2=12y的焦点相同,
可得3=$\sqrt{5+m}$,
解得m=4,
即有双曲线的方程为$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1,
可得渐近线方程为y=±$\frac{\sqrt{5}}{2}$x.
故选:C.
点评 本题考查双曲线的渐近线方程的求法,注意运用抛物线的焦点和双曲线的方程,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com