精英家教网 > 高中数学 > 题目详情
11.已知f(x)=e${\;}^{cos{x}^{2}}$,求dy.

分析 利用复合函数的求导法则,分别求导.

解答 解:y=e${\;}^{cos{x}^{2}}$,
两边取微分,
dy=${e}^{cos{x}^{2}}$(cosx2)′dx,
∴dy=${e}^{cos{x}^{2}}$(-sinx2)•2xdx,
∴dy=-2xsinx2${e}^{cos{x}^{2}}$dx.

点评 本题考查复合函数的求导法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足a1=$\frac{1}{2}$,an+1an=2an+1-1,令bn=an-1.
(1)求证:数列{$\frac{1}{{b}_{n}}$}为等差数列;
(2)设cn=$\frac{{a}_{n+1}}{{a}_{n}}$,求证:数列{cn}的前n项和Tn<n+$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若点A,B在曲线y=$\sqrt{{x}^{2}+2}$上,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求自然数1~100的各位数字之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在矩形ABCD中,E是CD上的点,以AE为折痕将△ADE向上折起,连接BD,BE,求证:
(1)若AD⊥BD,则平面ABD⊥平面BDE;
(2)以上命题的逆命题是否成立?若成立,给出证明,否则,举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-4,0),$\overrightarrow{c}$=(-1,-2),则-2$\overrightarrow{a}$+$\overrightarrow{b}$-3$\overrightarrow{c}$=(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若某四面体的三视图是全等的等腰直角三角形,且其直角边的长为6,则该四面体的体积是(  )
A.108B.72C.36D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{9}-\frac{y^2}{4}=-1$的渐近线为(  )
A.$y=±\frac{3}{2}x$B.$y=±\frac{2}{3}x$C.$y=±\frac{{\sqrt{13}}}{3}x$D.$y=±\frac{{\sqrt{13}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一个焦点与抛物线x2=12y的焦点相同,则此双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{5}}{5}$xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=$±\frac{\sqrt{5}}{2}$xD.y=$±\sqrt{5}$x

查看答案和解析>>

同步练习册答案