精英家教网 > 高中数学 > 题目详情
6.如图所示,在矩形ABCD中,E是CD上的点,以AE为折痕将△ADE向上折起,连接BD,BE,求证:
(1)若AD⊥BD,则平面ABD⊥平面BDE;
(2)以上命题的逆命题是否成立?若成立,给出证明,否则,举出反例.

分析 (1)由已知推导出AD⊥DE,AD⊥BD,由此能证明平面ABD⊥平面BDE.
(2)推导出AD⊥DE,由平面ABD⊥平面BDE,得AD⊥平面BDE,由此能证明AD⊥BD.

解答 证明:(1)∵在矩形ABCD中,E是CD上的点,以AE为折痕将△ADE向上折起,连接BD,BE,

∴AD⊥DE,
∵AD⊥BD,BD∩DE=D,
∴平面ABD⊥平面BDE.
解:(2)以上命题的逆命题成立.
证明如下:
∵在矩形ABCD中,E是CD上的点,以AE为折痕将△ADE向上折起,连接BD,BE,
∴AD⊥DE,
∵平面ABD⊥平面BDE,
∴AD⊥平面BDE,
∵BD?平面BDE,∴AD⊥BD.

点评 本题考查面面垂直的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A,B,C对应的边分别为a,b,c,若b-acosB=acosC-c,则△ABC的形状是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设S为平面上以点A(4,1),B(-1,-6),c(-3,2)为顶点的三角形区域.(三角形内部及边界)试求当点(x,y)在区域S上变动时
(1)t=4x-3y的最大值和最小值.
(2)若把t=4x-3y变为t=400x-300y呢?
(3)又把t=4x-3y改为t=4x+y时结果如何?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知p:“a≥$\frac{12}{t+\frac{1}{t}}$对t∈(0,+∞)恒成立”,q:“直线x-2y+a=0与曲线y-1=$\sqrt{4+2x-{x}^{2}}$有2个公共点”,则¬p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设复数z满足(3-4i)z=|4+3i|(i为虚数单位),则z的虚部为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=e${\;}^{cos{x}^{2}}$,求dy.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知{an}是首项不为零的等差数列,若$\frac{{S}_{n}}{{S}_{2n}}$是与n无关的常数k,则k=$\frac{1}{2}$或$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为30°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(  )
A.($\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$)B.[$\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$]C.($\frac{\sqrt{3}}{3}$,+∞)D.[$\frac{2\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,半径为2的半圆有一内接梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上.若双曲线以A、B为焦点,且过C、D两点,则当梯形ABCD的周长最大时,双曲线的实轴长为2$\sqrt{3}$-2.

查看答案和解析>>

同步练习册答案