精英家教网 > 高中数学 > 题目详情
1.设复数z满足(3-4i)z=|4+3i|(i为虚数单位),则z的虚部为$\frac{4}{5}$.

分析 由复数的模长和运算法则化简,由复数的基本概念可得虚部.

解答 解:∵复数z满足(3-4i)z=|4+3i|,
∴(3-4i)z=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∴z=$\frac{5}{3-4i}$=$\frac{5(3+4i)}{(3-4i)(3+4i)}$=$\frac{5(3+4i)}{25}$=$\frac{3}{5}$+$\frac{4}{5}$i,
∴z的虚部为:$\frac{4}{5}$,
故答案为:$\frac{4}{5}$.

点评 本题考查复数代数形式的混合运算,涉及复数的模长,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(2x+$\frac{π}{6}$)-cos2x.
(1)求f(x)的最小正周期及x∈[$\frac{π}{12}$,$\frac{2π}{3}$]时f(x)的值域;
(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,S△ABC=$\sqrt{3}$,c=2,f(C+$\frac{π}{4}$)=$\frac{\sqrt{3}}{4}$-$\frac{1}{2}$.求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$\frac{sinα}{sin\frac{α}{2}}$=$\frac{8}{5}$,则cosα的值是(  )
A.$\frac{3}{5}$B.$\frac{7}{50}$C.$\frac{7}{25}$D.-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设[x]表示不超过实数x的最大整数,集合A={n|n=[$\frac{{k}^{2}}{2015}$],1≤k≤2016,k∈N},则A中元素的个数是1512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.x、y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≥3}\\{2x+y≥6}\end{array}\right.$,若z=ax+y有最小值6,则实数a=(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在矩形ABCD中,E是CD上的点,以AE为折痕将△ADE向上折起,连接BD,BE,求证:
(1)若AD⊥BD,则平面ABD⊥平面BDE;
(2)以上命题的逆命题是否成立?若成立,给出证明,否则,举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若A={x|x>-1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是-1<x<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).

(1)要使倾斜后容器内的溶液不会溢出,角α的最大值是多少;
(2)现需要倒出不少于3000cm3的溶液,当α=60°时,能实现要求吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.经过点(3,-$\sqrt{2}$)的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,其一条渐近线方程为y=$\frac{\sqrt{3}}{3}$x,该双曲线的焦距为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案