精英家教网 > 高中数学 > 题目详情
13.经过点(3,-$\sqrt{2}$)的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,其一条渐近线方程为y=$\frac{\sqrt{3}}{3}$x,该双曲线的焦距为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

分析 将点(3,-$\sqrt{2}$)代入双曲线的方程,由渐近线方程可得$\frac{b}{a}$=$\frac{\sqrt{3}}{3}$,解得a,b,可得c=2,进而得到焦距2c=4.

解答 解:点(3,-$\sqrt{2}$)在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上,可得
$\frac{9}{{a}^{2}}$-$\frac{2}{{b}^{2}}$=1,
又渐近线方程为y=±$\frac{b}{a}$x,一条渐近线方程为y=$\frac{\sqrt{3}}{3}$x,
可得$\frac{b}{a}$=$\frac{\sqrt{3}}{3}$,
解得a=$\sqrt{3}$,b=1,
可得c=$\sqrt{{a}^{2}+{b}^{2}}$=2,
即有焦距为2c=4.
故选:D.

点评 本题考查双曲线的焦距的求法,注意运用点满足双曲线的方程和渐近线方程的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设复数z满足(3-4i)z=|4+3i|(i为虚数单位),则z的虚部为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线$\frac{{x}^{2}}{3}$-$\frac{6{y}^{2}}{{p}^{2}}$=1的一个焦点与抛物线y2=2px的焦点重合,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在四棱锥S-ABCD中,SB⊥底面ABCD,底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将离心率为e1的双曲线C1的实半轴长a和虚半轴长b同时增加m (m>0)个单位长度,得到离心率为e2的双曲线C2,则当a<b时有(  )
A.e1>e2B.e1<e2C.e1≤e2D.e1≥e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,半径为2的半圆有一内接梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上.若双曲线以A、B为焦点,且过C、D两点,则当梯形ABCD的周长最大时,双曲线的实轴长为2$\sqrt{3}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆与双曲线${x^2}-\frac{y^2}{3}=1$共同焦点,它们的离心率之和为$\frac{5}{2}$,则此椭圆方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{8}=1$B.$\frac{x^2}{12}+\frac{y^2}{16}=1$C.$\frac{x^2}{8}+\frac{y^2}{4}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线C:$\frac{{x}^{2}}{3}$-y2=1的左、右焦点分别为F1,F2,过点F2的直线与双曲线C的右支相交于P、Q两点,且点P的横坐标为2,则△PF1Q的周长为$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2.若左焦点F1关于其中一条渐近线的对称点位于双曲线上,则该双曲线的离心率e的值为(  )
A.$\sqrt{3}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

同步练习册答案